Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

1990 ◽  
Vol 259 (5) ◽  
pp. E626-E632 ◽  
Author(s):  
A. Wajngot ◽  
A. Khan ◽  
A. Giacca ◽  
M. Vranic ◽  
S. Efendic

We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with [2-3H]glucose and HGP with [6-3H]glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). [2-3H]- minus [6-3H]glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP.

2000 ◽  
Vol 279 (4) ◽  
pp. E907-E911 ◽  
Author(s):  
Mirjam Dirlewanger ◽  
Philippe Schneiter ◽  
Eric Jéquier ◽  
Luc Tappy

Hepatic and extrahepatic insulin sensitivity was assessed in six healthy humans from the insulin infusion required to maintain an 8 mmol/l glucose concentration during hyperglycemic pancreatic clamp with or without infusion of 16.7 μmol · kg−1 · min−1fructose. Glucose rate of disappearance (GRd), net endogenous glucose production (NEGP), total glucose output (TGO), and glucose cycling (GC) were measured with [6,6-2H2]- and [2-2H1]glucose. Hepatic glycogen synthesis was estimated from uridine diphosphoglucose (UDPG) kinetics as assessed with [1-13C]galactose and acetaminophen. Fructose infusion increased insulin requirements 2.3-fold to maintain blood glucose. Fructose infusion doubled UDPG turnover, but there was no effect on TGO, GC, NEGP, or GRd under hyperglycemic pancreatic clamp protocol conditions. When insulin concentrations were matched during a second hyperglycemic pancreatic clamp protocol, fructose administration was associated with an 11.1 μmol · kg−1 · min−1increase in TGO, a 7.8 μmol · kg−1 · min−1increase in NEGP, a 2.2 μmol · kg−1 · min−1increase in GC, and a 7.2 μmol · kg−1 · min−1decrease in GRd ( P < 0.05). These results indicate that fructose infusion induces hepatic and extrahepatic insulin resistance in humans.


2002 ◽  
Vol 283 (5) ◽  
pp. E958-E964 ◽  
Author(s):  
Sylvain Cardin ◽  
Konstantin Walmsley ◽  
Doss W. Neal ◽  
Phillip E. Williams ◽  
Alan D. Cherrington

We determined if blocking transmission in the fibers of the vagus nerves would affect basal hepatic glucose metabolism in the 18-h-fasted conscious dog. A pancreatic clamp (somatostatin, basal portal insulin, and glucagon) was employed. A 40-min control period was followed by a 90-min test period. In one group, stainless steel cooling coils (Sham, n = 5) were perfused with a 37°C solution, while in the other (Cool, n = 6), the coils were perfused with −20°C solution. Vagal blockade was verified by heart rate change (80 ± 9 to 84 ± 14 beats/min in Sham; 98 ± 12 to 193 ± 22 beats/min in Cool). The arterial glucose level was kept euglycemic by glucose infusion. No change in tracer-determined glucose production occurred in Sham, whereas in Cool it dropped significantly (2.4 ± 0.4 to 1.9 ± 0.4 mg · kg−1· min−1). Net hepatic glucose output did not change in Sham but decreased from 1.9 ± 0.3 to 1.3 ± 0.3 mg · kg−1· min−1in the Cool group. Hepatic gluconeogenesis did not change in either group. These data suggest that vagal blockade acutely modulates hepatic glucose production by inhibiting glycogenolysis.


1993 ◽  
Vol 265 (6) ◽  
pp. E943-E953 ◽  
Author(s):  
R. C. Bonadonna ◽  
S. del Prato ◽  
E. Bonora ◽  
G. Gulli ◽  
A. Solini ◽  
...  

Methodology for assessing the glycolytic and oxidative fluxes from plasma glucose, by measuring 3H2O and 14CO2 rates of production during [3-3H]- and [U-14C]glucose infusion, was tested in healthy subjects. In study 1, during staircase 3H2O infusion in six subjects, calculated rates of 3H2O appearance agreed closely with 3H2O infusion rates. In study 2, when [2-3H]glucose and NaH14CO3 were infused in four subjects in the basal state and during a 4-h euglycemic insulin (approximately 70 microU/ml) clamp, accurate estimates of the rates of [2-3H]glucose detritiation were obtained (94-97% of the expected values), and the recovery factor of NaH14CO3 did not change during hyperinsulinemia. In study 3, 11 subjects underwent a 4-h euglycemic insulin (approximately 70 microU/ml) clamp with [3-3H]- and [U-14C]glucose infusion and measurement of gaseous exchanges by indirect calorimetry to estimate the rates of total glycolysis, glycogen synthesis, glucose oxidation, nonoxidative glycolysis, hepatic glucose production, glucose recycling, and glucose conversion to fat. Hyperinsulinemia stimulated glycogen synthesis above baseline more than glycolysis [increment of 4.78 +/- 0.37 vs. 2.0 +/- 0.17 mg.min-1 x kg-1 of lean body mass (LBM), respectively, P < 0.01] and incompletely suppressed (approximately 87%) hepatic glucose production. The major component of nonoxidative glycolysis shifted from glucose recycling in the postabsorptive state (approximately 57% of nonoxidative glycolysis) to glucose conversion to fat during hyperinsulinemia (approximately 59% of nonoxidative glycolysis). Lipid oxidation during the insulin clamp was negatively correlated with both isotopic glucose oxidation (r = -0.822, P < 0.002) and glycolysis (r = -0.582, P < 0.07). In conclusion, in healthy subjects, glycogen synthesis plays a greater role than glycolysis and glucose oxidation in determining insulin-mediated glucose disposal. Part of insulin-mediated increase in glycolysis/oxidation might be secondary to the relief of the competition between fat and glucose for oxidation.


1981 ◽  
Vol 240 (5) ◽  
pp. E451-E457 ◽  
Author(s):  
B. Issekutz

Hepatic glucose production (Ra) and the rate of utilization of nonglucose sources (essentially muscle glycogen) were measured in dogs running on a treadmill (15%, 133 m/min) with indwelling catheters in the jugular vein and carotid artery. A mixture of [3-3H]glucose and [U-14C]glucose was used as tracer according to the principles of the primed constant-rate infusion techniques. Glucose was infused intravenously at a rate (12 mg.kg-1.min-1) about 20% higher than the endogenous glucose Ra in exercising dogs. Glucose infusion started either at the beginning of the run or midexercise. Plasma insulin (IRI), glucagon (IRG), and cAMP levels were measured. Exogenous glucose prevented the usual decline of both plasma glucose and IRI without causing hyperglycemia. Exercise increased the molar ratio of IRG/IRI from 0.7 to 1.4, and glucose infusion lowered it to the resting value. The rise of plasma cAMP was slowed significantly. Both the hepatic glucose Ra and intramuscular glycogenolysis were strongly inhibited and the metabolic clearance rate of glucose was increased by 60–100%. The ratio of the specific activities of [14C]lactate to [14C]glucose indicated that 75–95% of the lactate turnover arose from plasma glucose. The corresponding value in the control group was 40–50%. It is concluded that in prolonged exercise the decline of both plasma glucose and insulin play a major role in preserving glucose homeostasis, by limiting the glucose uptake of the working muscle and by helping to achieve an approximately equal contribution of the liver and the muscle glycogen for the elevated glycolysis.


1990 ◽  
Vol 123 (5) ◽  
pp. 504-510 ◽  
Author(s):  
Giuseppe Paolisso ◽  
Gennaro Pizza ◽  
Stefano De Riu ◽  
Giuseppe Marrazzo ◽  
Saverio Sgambato ◽  
...  

Abstract. In normal man oxytocin infusion under basal conditions and at pharmacological doses evoked a rapid surge in plasma glucose and glucagon levels followed by a later increase in plasma insulin levels. Simultaneous [D-3H]glucose infusion indicated that oxytocin also produced a prompt and significant increase in hepatic glucose output with a secondary increase in glucose disappearance rate. Eight healthy volunteers were studied during euglycemic glucose clamp and simultaneous [D-3H]glucose infusion, during suppression of endogenous pancreatic secretion by cyclic somatostatin (250 μg/h) and during exogenous glucagon (67 ng/min) and insulin (0.15 mU · kg−1 · min−1 from 0 to 120 min and 0.40 mU · kg−1 · min−1 from 121 to 240 min) replacement. During the first 60 min oxytocin (0.2 U/min) evoked a transient but significant increase in plasma glucose levels and hepatic glucose output with a simultaneous suppression of the glucose infusion rate. No difference in glucose disappearance and metabolic clearance rates were recorded throughout the clamp irrespective of whether oxytocin was infused or not. So we conclude that oxytocin exerts a hyperglycemic effect through an A-cell stimulation and a glycogenolytic action.


1991 ◽  
Vol 69 (4) ◽  
pp. 475-479 ◽  
Author(s):  
Ronald P. Brockman

Epinephrine causes hyperglycemia in part by increasing gluconeogenesis. However, the mechanism of its gluconeogenic effects has not been studied in ruminants. This study was undertaken to examine the effect of epinephrine on the net hepatic uptake of selected glucose precursors in sheep. The major abdominal blood vessels of the sheep were catheterized in normal and alloxan diabetic sheep. Glucose production, metabolic clearance of glucose, and the hepatic removal of certain glucose precursors were determined before, during, and after epinephrine infusion. Epinephrine increased the hepatic glucose output, the concentrations of lactate and glycerol in plasma, and the net hepatic uptake and fractional hepatic extraction of lactate and glycerol. These effects were independent of changes in the concentrations of insulin and glucagon in plasma. These results show that epinephrine directly stimulates hepatic gluconeogenesis in sheep.Key words: epinephrine, hepatic gluconeogenesis, sheep.


Diabetologia ◽  
1995 ◽  
Vol 38 (7) ◽  
pp. 831-838 ◽  
Author(s):  
B. R. Landau ◽  
V. Chandramouli ◽  
W. C. Schumann ◽  
K. Ekberg ◽  
K. Kumaran ◽  
...  

2009 ◽  
Vol 296 (4) ◽  
pp. R936-R943 ◽  
Author(s):  
Saskia Kley ◽  
Margarethe Hoenig ◽  
John Glushka ◽  
Eunsook S. Jin ◽  
Shawn C. Burgess ◽  
...  

Obesity is a risk factor for type 2 diabetes in cats. The risk of developing diabetes is severalfold greater for male cats than for females, even after having been neutered early in life. The purpose of this study was to investigate the role of different metabolic pathways in the regulation of endogenous glucose production (EGP) during the fasted state considering these risk factors. A triple tracer protocol using 2H2O, [U-13C3]propionate, and [3,4-13C2]glucose was applied in overnight-fasted cats (12 lean and 12 obese; equal sex distribution) fed three different diets. Compared with lean cats, obese cats had higher insulin ( P < 0.001) but similar blood glucose concentrations. EGP was lower in obese cats ( P < 0.001) due to lower glycogenolysis and gluconeogenesis (GNG; P < 0.03). Insulin, body mass index, and girth correlated negatively with EGP ( P < 0.003). Female obese cats had ∼1.5 times higher fluxes through phosphoenolpyruvate carboxykinase ( P < 0.02) and citrate synthase ( P < 0.05) than male obese cats. However, GNG was not higher because pyruvate cycling was increased 1.5-fold ( P < 0.03). These results support the notion that fasted obese cats have lower hepatic EGP compared with lean cats and are still capable of maintaining fasting euglycemia, despite the well-documented existence of peripheral insulin resistance in obese cats. Our data further suggest that sex-related differences exist in the regulation of hepatic glucose metabolism in obese cats, suggesting that pyruvate cycling acts as a controlling mechanism to modulate EGP. Increased pyruvate cycling could therefore be an important factor in modulating the diabetes risk in female cats.


2015 ◽  
Vol 308 (4) ◽  
pp. E306-E314 ◽  
Author(s):  
Satya S. Houin ◽  
Paul J. Rozance ◽  
Laura D. Brown ◽  
William W. Hay ◽  
Randall B. Wilkening ◽  
...  

Reduced fetal glucose supply, induced experimentally or as a result of placental insufficiency, produces an early activation of fetal glucose production. The mechanisms and substrates used to fuel this increased glucose production rate remain unknown. We hypothesized that in response to hypoglycemia, induced experimentally with maternal insulin infusion, the fetal liver would increase uptake of lactate and amino acids (AA), which would combine with hormonal signals to support hepatic glucose production. To test this hypothesis, metabolic studies were done in six late gestation fetal sheep to measure hepatic glucose and substrate flux before (basal) and after [days (d)1 and 4] the start of hypoglycemia. Maternal and fetal glucose concentrations decreased by 50% on d1 and d4 ( P < 0.05). The liver transitioned from net glucose uptake (basal, 5.1 ± 1.5 μmol/min) to output by d4 (2.8 ± 1.4 μmol/min; P < 0.05 vs. basal). The [U-13C]glucose tracer molar percent excess ratio across the liver decreased over the same period (basal: 0.98 ± 0.01, vs. d4: 0.89 ± 0.01, P < 0.05). Total hepatic AA uptake, but not lactate or pyruvate uptake, increased by threefold on d1 ( P < 0.05) and remained elevated throughout the study. This AA uptake was driven largely by decreased glutamate output and increased glycine uptake. Fetal plasma concentrations of insulin were 50% lower, while cortisol and glucagon concentrations increased 56 and 86% during hypoglycemia ( P < 0.05 for basal vs. d4). Thus increased hepatic AA uptake, rather than pyruvate or lactate uptake, and decreased fetal plasma insulin and increased cortisol and glucagon concentrations occur simultaneously with increased fetal hepatic glucose output in response to fetal hypoglycemia.


1999 ◽  
Vol 276 (4) ◽  
pp. E806-E813
Author(s):  
Dana K. Sindelar ◽  
Kayano Igawa ◽  
Chang A. Chu ◽  
Jim H. Balcom ◽  
Doss W. Neal ◽  
...  

In the present study we compared the hepatic effects of a selective increase in hepatic sinusoidal insulin brought about by insulin infusion into the hepatic artery with those resulting from insulin infusion into the portal vein. A pancreatic clamp was used to control the endocrine pancreas in conscious overnight-fasted dogs. In the control period, insulin was infused via peripheral vein and the portal vein. After the 40-min basal period, there was a 180-min test period during which the peripheral insulin infusion was stopped and an additional 1.2 pmol ⋅ kg−1⋅ min−1of insulin was infused into the hepatic artery (HART, n = 5) or the portal vein (PORT, n = 5, data published previously). In the HART group, the calculated hepatic sinusoidal insulin level increased from 99 ± 20 (basal) to 165 ± 21 pmol/l (last 30 min). The calculated hepatic artery insulin concentration rose from 50 ± 8 (basal) to 289 ± 19 pmol/l (last 30 min). However, the overall arterial (50 ± 8 pmol/l) and portal vein insulin levels (118 ± 24 pmol/l) did not change over the course of the experiment. In the PORT group, the calculated hepatic sinusoidal insulin level increased from 94 ± 30 (basal) to 156 ± 33 pmol/l (last 30 min). The portal insulin rose from 108 ± 42 (basal) to 192 ± 42 pmol/l (last 30 min), whereas the overall arterial insulin (54 ± 6 pmol/l) was unaltered during the study. In both groups hepatic sinusoidal glucagon levels remained unchanged, and euglycemia was maintained by peripheral glucose infusion. In the HART group, net hepatic glucose output (NHGO) was suppressed from 9.6 ± 2.1 μmol ⋅ kg−1⋅ min−1(basal) to 4.6 ± 1.0 μmol ⋅ kg−1⋅ min−1(15 min) and eventually fell to 3.5 ± 0.8 μmol ⋅ kg−1⋅ min−1(last 30 min, P < 0.05). In the PORT group, NHGO dropped quickly ( P < 0.05) from 10.0 ± 0.9 (basal) to 7.8 ± 1.6 (15 min) and eventually reached 3.1 ± 1.1 μmol ⋅ kg−1⋅ min−1(last 30 min). Thus NHGO decreases in response to a selective increase in hepatic sinusoidal insulin, regardless of whether it comes about because of hyperinsulinemia in the hepatic artery or portal vein.


Sign in / Sign up

Export Citation Format

Share Document