Effect of endurance training on hepatic glycogenolysis and gluconeogenesis during prolonged exercise in men

1995 ◽  
Vol 268 (3) ◽  
pp. E375-E383 ◽  
Author(s):  
A. R. Coggan ◽  
S. C. Swanson ◽  
L. A. Mendenhall ◽  
D. L. Habash ◽  
C. L. Kien

In humans, endurance training markedly reduces the rate of hepatic glucose production during exercise. To determine whether this is due to a reduction in glycogenolysis, in gluconeogenesis, or in both processes, six men were studied at rest and during 2 h of cycle ergometer exercise at 60% pretraining peak O2 consumption (VO2peak), both before and after completion of a strenuous endurance training program (cycling at 75-100% VO2peak for 45-90 min/day, 6 days/wk for 12 wk). The overall rate of glucose appearance (Ra) was determined using a primed continuous infusion of [6,6-2H]glucose, whereas the rate of gluconeogenesis (Rgng) was estimated from the incorporation of 13C into glucose (via pyruvate carboxylase) from simultaneously infused [13C]bicarbonate. Training did not affect glucose kinetics at rest but reduced the average Ra during exercise by 42% [from 36.8 +/- 3.8 to 21.5 +/- 3.6 (SE) mumol.min-1.kg-1; P < 0.001]. This decrease appeared to be mostly due to a reduction in hepatic glycogenolysis. However, the estimated Rgng during exercise also decreased significantly (P < 0.001) with training, falling from 7.5 +/- 1.6 mumol.min-1.kg-1 (23 +/- 3% of total Ra) before training to 3.1 +/- 0.6 mumol.min-1.kg-1 (14 +/- 3% of total Ra) after training. These training-induced adaptations in hepatic glucose metabolism were associated with an attenuated hormonal response to exercise (i.e., higher insulin and lower glucagon, norepinephrine, and epinephrine concentrations) as well as a reduced availability of gluconeogenic precursors (i.e., lower lactate and glycerol concentrations). We conclude that endurance training reduces both hepatic glycogenolysis and gluconeogenesis during prolonged exercise in men.

2009 ◽  
Vol 296 (4) ◽  
pp. R936-R943 ◽  
Author(s):  
Saskia Kley ◽  
Margarethe Hoenig ◽  
John Glushka ◽  
Eunsook S. Jin ◽  
Shawn C. Burgess ◽  
...  

Obesity is a risk factor for type 2 diabetes in cats. The risk of developing diabetes is severalfold greater for male cats than for females, even after having been neutered early in life. The purpose of this study was to investigate the role of different metabolic pathways in the regulation of endogenous glucose production (EGP) during the fasted state considering these risk factors. A triple tracer protocol using 2H2O, [U-13C3]propionate, and [3,4-13C2]glucose was applied in overnight-fasted cats (12 lean and 12 obese; equal sex distribution) fed three different diets. Compared with lean cats, obese cats had higher insulin ( P < 0.001) but similar blood glucose concentrations. EGP was lower in obese cats ( P < 0.001) due to lower glycogenolysis and gluconeogenesis (GNG; P < 0.03). Insulin, body mass index, and girth correlated negatively with EGP ( P < 0.003). Female obese cats had ∼1.5 times higher fluxes through phosphoenolpyruvate carboxykinase ( P < 0.02) and citrate synthase ( P < 0.05) than male obese cats. However, GNG was not higher because pyruvate cycling was increased 1.5-fold ( P < 0.03). These results support the notion that fasted obese cats have lower hepatic EGP compared with lean cats and are still capable of maintaining fasting euglycemia, despite the well-documented existence of peripheral insulin resistance in obese cats. Our data further suggest that sex-related differences exist in the regulation of hepatic glucose metabolism in obese cats, suggesting that pyruvate cycling acts as a controlling mechanism to modulate EGP. Increased pyruvate cycling could therefore be an important factor in modulating the diabetes risk in female cats.


2002 ◽  
Vol 283 (5) ◽  
pp. E958-E964 ◽  
Author(s):  
Sylvain Cardin ◽  
Konstantin Walmsley ◽  
Doss W. Neal ◽  
Phillip E. Williams ◽  
Alan D. Cherrington

We determined if blocking transmission in the fibers of the vagus nerves would affect basal hepatic glucose metabolism in the 18-h-fasted conscious dog. A pancreatic clamp (somatostatin, basal portal insulin, and glucagon) was employed. A 40-min control period was followed by a 90-min test period. In one group, stainless steel cooling coils (Sham, n = 5) were perfused with a 37°C solution, while in the other (Cool, n = 6), the coils were perfused with −20°C solution. Vagal blockade was verified by heart rate change (80 ± 9 to 84 ± 14 beats/min in Sham; 98 ± 12 to 193 ± 22 beats/min in Cool). The arterial glucose level was kept euglycemic by glucose infusion. No change in tracer-determined glucose production occurred in Sham, whereas in Cool it dropped significantly (2.4 ± 0.4 to 1.9 ± 0.4 mg · kg−1· min−1). Net hepatic glucose output did not change in Sham but decreased from 1.9 ± 0.3 to 1.3 ± 0.3 mg · kg−1· min−1in the Cool group. Hepatic gluconeogenesis did not change in either group. These data suggest that vagal blockade acutely modulates hepatic glucose production by inhibiting glycogenolysis.


1998 ◽  
Vol 274 (1) ◽  
pp. E23-E28 ◽  
Author(s):  
Réjean Drouin ◽  
Carole Lavoie ◽  
Josée Bourque ◽  
Francine Ducros ◽  
Danielle Poisson ◽  
...  

This study was designed to characterize the impact of endurance training on the hepatic response to glucagon. We measured the effect of glucagon on hepatic glucose production (HGP) in resting trained ( n = 8) and untrained ( n = 8) healthy male subjects (maximal rate of O2 consumption: 65.9 ± 1.6 vs. 46.8 ± 0.6 ml O2 ⋅ kg−1 ⋅ min−1, respectively, P < 0.001). Endogenous insulin and glucagon were suppressed by somatostatin (somatotropin release-inhibiting hormone) infusion (450 μg/h) over 4 h. Insulin (0.15 mU ⋅ kg−1 ⋅ min−1) was infused throughout the study, and glucagon (1.5 ng ⋅ kg−1 ⋅ min−1) was infused over the last 2 h. During the latter period, plasma glucagon and insulin remained constant at 138.2 ± 3.1 vs. 145.3 ± 2.1 ng/l and at 95.5 ± 4.5 vs. 96.2 ± 1.9 pmol/l in trained and untrained subjects, respectively. Plasma glucose increased and peaked at 11.4 ± 1.1 mmol/l in trained subjects and at 8.9 ± 0.8 mmol/l in untrained subjects ( P < 0.001). During glucagon stimulation, the mean increase in HGP area under the curve was 15.8 ± 2.8 mol ⋅ kg−1 ⋅ min−1in trained subjects compared with 7.4 ± 1.6 mol ⋅ kg−1 ⋅ min−1in untrained subjects ( P < 0.01) over the first hour and declined to 6.8 ± 2.8 and 4.9 ± 1.4 mol ⋅ kg−1 ⋅ min−1during the second hour. In conclusion, these observations indicate that endurance training is associated with an increase in HGP in response to physiological levels of glucagon, thus suggesting an increase in hepatic glucagon sensitivity.


2010 ◽  
Vol 298 (5) ◽  
pp. E1019-E1026 ◽  
Author(s):  
Dale S. Edgerton ◽  
Rita Basu ◽  
Christopher J. Ramnanan ◽  
Tiffany D. Farmer ◽  
Doss Neal ◽  
...  

Inactive cortisone is converted to active cortisol within the liver by 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1), and impaired regulation of this process may be related to increased hepatic glucose production (HGP) in individuals with type 2 diabetes. The primary aim of this study was to investigate the effect of acute 11β-HSD1 inhibition on HGP and fat metabolism during insulin deficiency. Sixteen conscious, 42-h-fasted, lean, healthy dogs were studied. Somatostatin was infused to create insulin deficiency, and the animals were treated with a specific 11β-HSD1 inhibitor (compound 531) or placebo for 5 h. 11β-HSD1 inhibition completely suppressed hepatic cortisol production, and this attenuated the increase in HGP that occurred during insulin deficiency. PEPCK and glucose-6-phosphatase expression were decreased when 11β-HSD1 was inhibited, but gluconeogenic flux was unchanged, implying an effect on glycogenolysis. Since inhibition of hepatic cortisol production reduces HGP during insulin deficiency, 11β-HSD1 is a potential therapeutic target for the treatment of excess glucose production that occurs in diabetes.


2005 ◽  
Vol 30 (3) ◽  
pp. 313-327 ◽  
Author(s):  
Carole Lavoie

One paradox of hormonal regulation during exercise is the maintenance of glucose homeostasis after endurance training despite a lower increase in plasma glucagon. One explanation could be that liver sensitivity to glucagon is increased by endurance training. Glucagon exerts its effect through a 62 KDa glycoprotein receptor, member of the G protein-coupled receptor. To determine whether changes with exercise in glucagon sensitivity occurred at the level of the glucagon receptor (GR), binding characteristics of hepatic glucagon receptors were ascertained in rat purified plasma membranes. Saturation kinetics indicated no difference in the dissociation constant or affinity of glucagon receptor, but a significantly higher glucagon receptor binding density in liver in endurance trained compared to untrained animals. Along with endurance training, it appears that fasting also changes GR binding characteristics. In animals fasting 24 hrs, a significant increase in glucagon receptor density was also reported. Although the exact mechanism remains unknown, there is no doubt that the liver can adapt to physiological stress through modulation of GR binding characteristics to enhance the hepatic glucose production responsiveness to glucagon. Key words: glucagon sensitivity, liver, endurance training, rats


1988 ◽  
Vol 255 (6) ◽  
pp. E812-E823
Author(s):  
H. J. Adrogue ◽  
Z. Chap ◽  
Y. Okuda ◽  
L. Michael ◽  
C. Hartley ◽  
...  

The determinants of the altered glucoregulation in acidosis were investigated in anesthetized dogs. Because CO2 rapidly equilibrates and its effects are mediated by pH changes, CO2 inhalation was examined. Plasma acid-base composition, glucose, insulin, glucagon, and blood flows were evaluated before and after an intravenous glucose load (1.2 +/- 0.1 g/kg body wt) in normal and acidotic dogs with flow probes and catheters chronically implanted in the portal circulation. A simultaneous infusion of phentolamine (5 micrograms.kg-1.min-1), propranolol (3.5 micrograms.kg-1.min-1), both, or none was used. All acidemic dogs had lower hepatic extraction of insulin and greater hyperglycemia after the glucose challenge; thus the adrenergic system is not critical for these responses. Because arterial insulin levels were either normal (propranolol) or increased (all others) in acidosis, insulin resistance was likely. Insulin infusion (2 and 4 mU.kg-1.min-1) with euglycemic clamp and [3-3H]glucose documented that acidemia decreases peripheral glucose utilization and the insulin suppression of hepatic glucose production. Acidemia also enhances plasma glucagon levels, yet this effect plays a limited role in the observed hyperglycemia.


1990 ◽  
Vol 68 (3) ◽  
pp. 990-996 ◽  
Author(s):  
A. R. Coggan ◽  
W. M. Kohrt ◽  
R. J. Spina ◽  
D. M. Bier ◽  
J. O. Holloszy

To assess the effects of endurance training on plasma glucose kinetics during moderate-intensity exercise in men, seven men were studied before and after 12 wk of strenuous exercise training (3 days/wk running, 3 days/wk cycling). After priming of the glucose and bicarbonate pools, [U-13C] glucose was infused continuously during 2 h of cycle ergometer exercise at 60% of pretraining peak O2 uptake (VO2) to determine glucose turnover and oxidation. Training increased cycle ergometer peak VO2 by 23% and decreased the respiratory exchange ratio during the final 30 min of exercise from 0.89 +/- 0.01 to 0.85 +/- 0.01 (SE) (P less than 0.001). Plasma glucose turnover during exercise decreased from 44.6 +/- 3.5 mumol.kg fat-free mass (FFM)-1.min-1 before training to 31.5 +/- 4.3 after training (P less than 0.001), whereas plasma glucose clearance (i.e., rate of disappearance/plasma glucose concentration) fell from 9.5 +/- 0.6 to 6.4 +/- 0.8 ml.kg FFM-1.min-1 (P less than 0.001). Oxidation of plasma-derived glucose, which accounted for approximately 90% of plasma glucose disappearance in both the untrained and trained states, decreased from 41.1 +/- 3.4 mumol.kg FFM-1.min-1 before training to 27.7 +/- 4.8 after training (P less than 0.001). This decrease could account for roughly one-half of the total reduction in the amount of carbohydrate utilized during the final 30 min of exercise in the trained compared with the untrained state.


1993 ◽  
Vol 74 (2) ◽  
pp. 782-787 ◽  
Author(s):  
K. D. Sumida ◽  
J. H. Urdiales ◽  
C. M. Donovan

The effects of endurance training (running 90 min/day at 30 m/min, 10% grade) on hepatic gluconeogenesis were studied in 24-h-fasted rats with use of the isolated liver perfusion technique. After isolation, the liver was perfused (single pass) for 30 min with Krebs-Henseleit bicarbonate buffer and fresh bovine erythrocytes (hematocrit 22–24%) with no added substrate. Subsequent to the "washout" period, the reservoir was elevated with various concentrations of lactate and [U-14C]lactate (10,000 dpm/ml) to assess hepatic glucose production. Relative flow rates were not significantly different between trained (1.94 +/- 0.05 ml/g liver) and control livers (1.91 +/- 0.05 ml/g liver). Furthermore, no significant differences were observed in perfusate pH, hematocrit, bile production, or serum alanine aminotransferase effluxing from trained or control livers. At saturating arterial lactate concentrations (> 2 mM), the maximal rate (Vmax) for hepatic glucose production was significantly higher for trained (0.91 +/- 0.04 mumol.min-1 x g liver-1) than for control livers (0.73 +/- 0.02 mumol.min-1 x g liver-1). That this reflected increased gluconeogenesis is supported by a significant elevation in the Vmax for [14C]glucose production from trained (13,150 +/- 578 dpm.min-1 x g liver-1) compared with control livers (10,712 +/- 505 dpm.min-1 x g liver-1). Significant increases were also observed in the Vmax for lactate uptake (25%), O2 consumption (19%), and 14CO2 production (23%) from endurance-trained livers. The Km for hepatic glucose output, approximately 1.05 mM lactate, was unchanged after endurance training. These findings demonstrate that chronic physical activity results in an elevated capacity for hepatic gluconeogenesis, as assessed in situ at saturating lactate concentrations.


1993 ◽  
Vol 75 (1) ◽  
pp. 70-75 ◽  
Author(s):  
A. R. Coggan ◽  
D. L. Habash ◽  
L. A. Mendenhall ◽  
S. C. Swanson ◽  
C. L. Kien

Endurance training reduces the rate of CO2 release (i.e., VCO2) during submaximal exercise, which has been interpreted to indicate a reduction in carbohydrate oxidation. However, decreased ventilation, decreased buffering of lactate, and/or increased fixation of CO2 could also account for a lower VCO2 after training. We therefore used a primed continuous infusion of NaH13CO3 to determine the whole body rate of appearance of CO2 (RaCO2) in seven men during 2 h of cycle ergometer exercise at 60% of pretraining peak O2 uptake (VO2peak) before and after endurance training. RaCO2 is independent of the above-described factors affecting VCO2 but may overestimate net CO2 production due to pyruvate carboxylation and subsequent isotopic exchange in the tricarboxylic acid cycle. Training consisted of cycling at 75–100% VO2peak for 45–90 min/day, 6 days/wk, for 12 wk and increased VO2peak by 28% (P < 0.001). VCO2 during submaximal exercise was reduced from 86.8 +/- 3.7 to 76.2 +/- 4.2 mmol/min, whereas RaCO2 fell from 88.9 +/- 4.0 to 76.4 +/- 4.4 mmol/min (both P < 0.001). VCO2 and RaCO2 were highly correlated in the untrained (r = 0.98, P < 0.001) and trained (r = 0.99, P < 0.001) states, as were individual changes in VCO2 and RaCO2 with training (r = 0.88, P < 0.01). These results support the hypothesis that endurance training decreases CO2 production during exercise. The magnitude and direction of this change cannot be explained by reported training-induced alterations in amino acid oxidation, indicating that it must be the result of a decrease in carbohydrate oxidation and an increase in fat oxidation.(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 28 (6) ◽  
pp. 912-924 ◽  
Author(s):  
Jessica A. Hall ◽  
Mitsuhisa Tabata ◽  
Joseph T. Rodgers ◽  
Pere Puigserver

Abstract Hepatic forkhead protein FoxO1 is a key component of systemic glucose homeostasis via its ability to regulate the transcription of rate-limiting enzymes in gluconeogenesis. Important in the regulation of FoxO1 transcriptional activity are the modifying/demodifying enzymes that lead to posttranslational modification. Here, we demonstrate the functional interaction and regulation of FoxO1 by herpesvirus-associated ubiquitin-specific protease 7 (USP7; also known as herpesvirus-associated ubiquitin-specific protease, HAUSP), a deubiquitinating enzyme. We show that USP7-mediated mono-deubiquitination of FoxO1 results in suppression of FoxO1 transcriptional activity through decreased FoxO1 occupancy on the promoters of gluconeogenic genes. Knockdown of USP7 in primary hepatocytes leads to increased expression of FoxO1-target gluconeogenic genes and elevated glucose production. Consistent with this, USP7 gain-of-function suppresses the fasting/cAMP-induced activation of gluconeogenic genes in hepatocyte cells and in mouse liver, resulting in decreased hepatic glucose production. Notably, we show that the effects of USP7 on hepatic glucose metabolism depend on FoxO1. Together, these results place FoxO1 under the intimate regulation of deubiquitination and glucose metabolic control with important implication in diseases such as diabetes.


Sign in / Sign up

Export Citation Format

Share Document