Intrauterine growth restriction does not alter response of protein synthesis to feeding in newborn pigs

1997 ◽  
Vol 272 (5) ◽  
pp. E877-E884 ◽  
Author(s):  
T. A. Davis ◽  
M. L. Fiorotto ◽  
D. G. Burrin ◽  
W. G. Pond ◽  
H. V. Nguyen

This study aimed to determine the effect of intrauterine growth restriction (IUGR) on the acute response of tissue protein synthesis to feeding in newborn pigs. Newborn pigs of sows fed either control or protein-restricted diets throughout gestation were designated C or IUGR, respectively. Both groups were either fasted for 9 h after birth or fed hourly 30 ml colostrum/kg body wt for 2.75 h after a 6-h fast. Fractional rates of tissue protein synthesis (Ks) were measured in vivo with a flooding dose of L-[4-3H]phenylalanine. Birth weight was reduced by 33% in IUGR pigs. IUGR had no effect on Ks in skeletal muscles, heart, liver, jejunum, or pancreas. Feeding stimulated tissue Ks similarly in C and IUGR pigs. Fasting plasma insulin concentrations and their rise with feeding were unaffected by IUGR. Plasma insulin-like growth factor I (IGF-I) concentrations were reduced by 42% in IUGR pigs and were not altered by feeding in either IUGR or C pigs. There were positive nonlinear relationships between tissue Ks and circulating concentrations of insulin. The results indicate that, in newborn pigs, tissue Ks are unaffected by IUGR, despite reduced plasma IGF-I concentrations. The efficiency with which nutrients stimulate tissue Ks is also not altered by IUGR, perhaps because the rise in plasma insulin concentrations with feeding is unaffected by IUGR.

1996 ◽  
Vol 271 (5) ◽  
pp. E872-E878 ◽  
Author(s):  
H. C. Lo ◽  
D. M. Ney

Growth hormone (GH) and insulin-like growth factor I (IGF-I) selectively increase tissue mass. We compared the fractional rate of protein synthesis (Ks in skeletal muscle, jejunal mucosa and muscularis, and liver to investigate the differential effects of GH and IGF-I on tissue protein synthesis. Surgically stressed rats were maintained with hypocaloric total parenteral nutrition (TPN) and given recombinant human (rh) GH (rhGH), rhIGF-I, rhGH + rhIGF-I (800 or 800 + 800 micrograms/day, respectively), or TPN alone. After 3 days, a flooding dose of valine (800 mumol with 5.56 MBq L-[3,4-3H]valine) was administered, and rats were killed 20 min later. Body weight gain, nitrogen retention, and serum IGF-I concentrations confirmed that GH plus IGF-I additively increased anabolism. Serum insulin concentrations were significantly increased by GH and decreased by IGF-I. GH significantly increased Ks in skeletal muscle and jejunal muscularis, IGF-I significantly increased Ks in jejunal mucosa and muscularis, and neither GH nor IGF-I altered Ks in liver. GH and IGF-I differentially increase tissue protein synthesis in vivo.


1996 ◽  
Vol 270 (5) ◽  
pp. E802-E809 ◽  
Author(s):  
T. A. Davis ◽  
D. G. Burrin ◽  
M. L. Fiorotto ◽  
H. V. Nguyen

The study aimed to determine the developmental changes in the response of peripheral and visceral tissue protein synthesis to feeding during early postnatal life and the associated changes in circulating insulin, insulin-like growth factor (IGF-I), and amino acid concentrations. Tissue protein synthesis was measured in vivo with a large dose of L-[4(-3)H]phenylalanine in 7- and 26-day-old pigs that were either fasted for 24 h or refed for 2.75 h after a 24-h fast. Fractional rates of protein synthesis (Ks) in skeletal muscle, heart, and liver were greater in 7-than in 26-day-old pigs. Refeeding stimulated Ks in skeletal muscle, pancreas, jejunum, and liver of both 7-and 26-day-old pigs. The stimulation of skeletal muscle and jejunal Ks by refeeding was greater in 7- than in 26-day-old pigs. Plasma IGF-I concentrations were lower in 7- than in 26-day-old pigs. Plasma concentrations of insulin and amino acids increased with refeeding. The increase in plasma insulin concentrations with refeeding was greater in 7- than in 26-days-old pigs. These results indicate that the stimulation in skeletal muscle and jejunal protein synthesis by feeding is elevated in young compared with older suckling pigs. This enhanced stimulation of protein synthesis by feeding in neonatal pigs is associated with elevated circulating concentrations of insulin but not amino acids or IGF-I.


Reproduction ◽  
2021 ◽  
Author(s):  
Liyuan Cui ◽  
Feng Xu ◽  
Songcun Wang ◽  
Zhuxuan Jiang ◽  
Lu Liu ◽  
...  

Deficient decidualization of endometrial stromal cells (ESCs) can cause adverse pregnancy outcomes including miscarriage, intrauterine growth restriction and pre-eclampsia. Decidualization is regulated by multiple factors such as hormones and circadian genes. Melatonin, a circadian-controlled hormone, is reported to be important for various reproductive process, including oocyte maturation and placenta development. Its receptor, MT1, is considered to be related to intrauterine growth restriction and pre-eclampsia. However, the role of melatonin-MT1 signal in decidualization remains unknown. Here, we reported that decidual stromal cells from miscarriages displayed deficient decidualization with decreased MT1 expression. The expression level of MT1 is gradually increased with the process of decidualization induction in vitro. MT1 knockdown suppressed decidualization level, while overexpression of MT1 promoted the decidualization process. Moreover, changing MT1 level could regulate the expression of decidualization-related transcription factor FOXO1. Melatonin promoted decidualization and reversed the decidualization deficiency due to MT1 knockdown. Using in vitro and in vivo experiments, we further identified that lipopolysaccharide (LPS) could induce inflammation and decidualization resistance with downregulated MT1 expression, and melatonin could reverse the inflammation and decidualization resistance induced by LPS. These results suggested melatonin-MT1 signal might be essential for decidualization and might provide a novel therapeutic target for decidualization deficiency-associated pregnancy complications.


2002 ◽  
Vol 283 (4) ◽  
pp. E638-E647 ◽  
Author(s):  
Teresa A. Davis ◽  
Marta L. Fiorotto ◽  
Douglas G. Burrin ◽  
Rhonda C. Vann ◽  
Peter J. Reeds ◽  
...  

Studies have shown that protein synthesis in skeletal muscle of neonatal pigs is uniquely sensitive to a physiological rise in both insulin and amino acids. Protein synthesis in cardiac muscle, skin, and spleen is responsive to insulin but not amino acid stimulation, whereas in the liver, protein synthesis responds to amino acids but not insulin. To determine the response of protein synthesis to insulin-like growth factor I (IGF-I) in this model, overnight-fasted 7- and 26-day-old pigs were infused with IGF-I (0, 20, or 50 μg · kg−1 · h−1) to achieve levels within the physiological range, while amino acids and glucose were clamped at fasting levels. Because IGF-I infusion lowers circulating insulin levels, an additional group of high-dose IGF-I-infused pigs was also provided replacement insulin (10 ng · kg−0.66 · min−1). Tissue protein synthesis was measured using a flooding dose ofl-[4-3H]phenylalanine. In 7-day-old pigs, low-dose IGF-I increased protein synthesis by 25–60% in various skeletal muscles as well as in cardiac muscle (+38%), skin (+24%), and spleen (+32%). The higher dose of IGF-I elicited no further increase in protein synthesis above that found with the low IGF-I dose. Insulin replacement did not alter the response of protein synthesis to IGF-I in any tissue. The IGF-I-induced increases in tissue protein synthesis decreased with development. IGF-I infusion, with or without insulin replacement, had no effect on protein synthesis in liver, jejunum, pancreas, or kidney. Thus the magnitude, tissue specificity, and developmental change in the response of protein synthesis to acute physiological increases in plasma IGF-I are similar to those previously observed for insulin. This study provides in vivo data indicating that circulating IGF-I and insulin act on the same signaling components to stimulate protein synthesis and that this response is highly sensitive to stimulation in skeletal muscle of the neonate.


2013 ◽  
Vol 6 (2) ◽  
pp. 185-197 ◽  
Author(s):  
K. Kullik ◽  
B. Brosig ◽  
S. Kersten ◽  
H. Valenta ◽  
A.-K. Diesing ◽  
...  

Possible interactions between the Fusarium toxin deoxynivalenol and lipopolysaccharides on in vivo protein synthesis were investigated in selected porcine tissues. A total of 36 male castrated pigs (initial weight of 26 kg) were used. 24 pigs were fed a control diet and 12 a Fusarium-contaminated diet (chronic oral deoxynivalenol, 3.1 mg/kg diet) for 37 days. Tissue protein synthesis was measured in pigs fed control diet after intravenous infusion of deoxynivalenol (100 µg/kg live weight/h), lipopolysaccharides (7.5 µg/kg live weight/h) or a combination of both compounds on the day of the measurements, while six pigs from the chronic oral deoxynivalenol group were intravenously treated with lipopolysaccharides (7.5 µg/kg live weight/h). Deoxynivalenol challenge alone failed to alter protein synthesis parameters. Fractional protein synthesis rates were exclusively reduced in liver, spleen and small intestine of lipopolysaccharides-treated pigs. Intravenous deoxynivalenol co-exposure enhanced the impacts of lipopolysaccharides on protein synthesis parameters in the spleen and the small intestine to some extent, while a chronic oral pre-exposure with deoxynivalenol relieved its effects in the spleen. Whether these interactions occur in other tissues and under other study conditions, especially toxin doses and route of entry into the body, needs to be examined further.


1980 ◽  
Vol 8 (3) ◽  
pp. 283-285 ◽  
Author(s):  
MARGARET A. McNURLAN ◽  
VIRGINIA M. PAIN ◽  
PETER J. GARLICK

Sign in / Sign up

Export Citation Format

Share Document