The angiotensin II type 2 receptor: an enigma with multiple variations

2000 ◽  
Vol 278 (3) ◽  
pp. E357-E374 ◽  
Author(s):  
Stefan Gallinat ◽  
Silke Busche ◽  
Mohan K. Raizada ◽  
Colin Sumners

Since it was discovered ten years ago, the angiotensin II (ANG II) type 2 (AT2) receptor has been an enigma. This receptor binds ANG II with a high affinity but is not responsible for mediating any of the classical physiological actions of this peptide, all of which involve the ANG II type 1 (AT1) receptor. Furthermore, the AT2 receptor exhibits dramatic differences in biochemical and functional properties and in patterns of expression compared with the AT1 receptor. During the past decade, much information has been gathered about the AT2 receptor, and the steadily increasing number of publications indicates a growing interest in this new and independent area of research. A number of studies suggest a role of AT2 receptors in brain, renal, and cardiovascular functions and in the processes of apoptosis and tissue regeneration. Despite these advances, nothing stands out as the major singular function of these receptors. The study of AT2 receptors has reached a crossroads, and innovative approaches must be considered so that unifying mechanisms as to the function of these unique receptors can be put forward. In this review we will discuss the advances that have been made in understanding the biology of the AT2receptor. Furthermore, we will consider how these discoveries, along with newer experimental approaches, may eventually lead to the elusive physiological and pathophysiological functions of these receptors.

2016 ◽  
Vol 130 (15) ◽  
pp. 1307-1326 ◽  
Author(s):  
Bryna S.M. Chow ◽  
Terri J. Allen

Angiotensin II (Ang II) is well-considered to be the principal effector of the renin–angiotensin system (RAS), which binds with strong affinity to the angiotensin II type 1 (AT1R) and type 2 (AT2R) receptor subtype. However, activation of both receptors is likely to stimulate different signalling mechanisms/pathways and produce distinct biological responses. The haemodynamic and non-haemodynamic effects of Ang II, including its ability to regulate blood pressure, maintain water–electrolyte balance and promote vasoconstriction and cellular growth are well-documented to be mediated primarily by the AT1R. However, its biological and functional effects mediated through the AT2R subtype are still poorly understood. Recent studies have emphasized that activation of the AT2R regulates tissue and organ development and provides in certain context a potential counter-regulatory mechanism against AT1R-mediated actions. Thus, this review will focus on providing insights into the biological role of the AT2R, in particular its actions within the renal and cardiovascular system.


2011 ◽  
Vol 300 (4) ◽  
pp. E708-E716 ◽  
Author(s):  
Qiao-Yan Guo ◽  
Li-Ning Miao ◽  
Bing Li ◽  
Fu-Zhe Ma ◽  
Nian Liu ◽  
...  

12-lipoxygenase (12-LO) was implicated in the development of diabetic nephropathy (DN), in which the proteinuria was thought to be associated with a decreased expression of glomerular P-cadherin. Therefore, we investigated the role of 12-LO in the glomerular P-cadherin expression in type 2 diabetic rats according to the glomerular sizes. Rats fed with high-fat diet for 6 wk were treated with low-dose streptozotocin. Once diabetes onset, diabetic rats were treated with 12-LO inhibitor cinnamyl-3,4-dihydroxy-cyanocinnamate (CDC) for 8 wk. Then glomeruli were isolated from diabetic and control rats with a sieving method. RT-PCR, Western blotting, and immunofluorescent staining were used for mRNA and protein expressions of P-cadherin and angiotensin II (Ang II) type 1 receptor (AT1). We found that CDC did not affect the glucose levels but completely attenuated diabetic increases in glomerular volume and proteinuria. Diabetes significantly decreased the P-cadherin mRNA and protein expressions and increased the AT1 mRNA and protein expressions in the glomeruli. These changes were significantly prevented by CDC and recaptured by direct infusion of 12-LO product [12(S)-HETE] to normal rats for 7 days. The decreased P-cadherin expression was similar between large and small glomeruli, but the increased AT1 expression was significantly higher in the large than in the small glomeruli from diabetic and 12(S)-HETE-treated rats. Direct infusion of normal rats with Ang II for 14 days also significantly decreased the glomerular P-cadherin expression. These results suggest that diabetic proteinuria is mediated by the activation of 12-LO pathway that is partially attributed to the decreased glomerular P-cadherin expression.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 688-688
Author(s):  
Toshihiro Ichiki ◽  
Kotaro Takeda ◽  
Akira Takeshita

58 Recent studies suggest a crucial role of reactive oxygen species (ROS) for the signaling of Angiotensin II (Ang II) through type 1 Ang II receptor (AT1-R). However, the role of ROS in the regulation of AT1-R expression has not been explored. In this study, we examined the effect of an antioxidant on the homologous downregulation of AT1-R by Ang II. Ang II (10 -6 mol/L) decreased AT1-R mRNA with a peak suppression at 6 hours of stimulation in rat aortic vascular smooth muscle cells (VSMC). Ang II dose-dependently (10 -8 -10 -6 ) suppressed AT1-R mRNA at 6 hours of stimulation. Preincubation of VSMC with N-acetylcysteine (NAC), a potent antioxidant, almost completely inhibited the Ang II-induced downregulation of AT1-R mRNA. The effect of NAC was due to stabilization of the AT1-R mRNA that was destabilized by Ang II. Ang II did not affect the promoter activity of AT1-R gene. Diphenylene iodonium (DPI), an inhibitor of NADH/NADPH oxidase failed to inhibit the Ang II-induced AT1-R mRNA downregulation. The Ang II-induced AT1-R mRNA downregulation was also blocked by PD98059, an extracellular signal-regulated protein kinase (ERK) kinase inhibitor. Ang II-induced ERK activation was inhibited by NAC as well as PD98059 whereas DPI did not inhibit it. To confirm the role of ROS in the regulation of AT1-R mRNA expression, VSMC were stimulated with H 2 O 2 . H 2 O 2 suppressed the AT1-R mRNA expression and activated ERK. These results suggest that production of ROS and activation of ERK are critical for downregulation of AT1-R mRNA. The differential effect of NAC and DPI on the downregulation of AT1-R mRNA may suggest the presence of other sources than NADH/NADPH oxidase pathway for ROS in Ang II signaling. Generation of ROS through stimulation of AT1-R not only mediates signaling of Ang II but may play a crucial role in the adaptation process of AT1-R to the sustained stimulation of Ang II.


1995 ◽  
Vol 268 (6) ◽  
pp. R1401-R1405 ◽  
Author(s):  
M. el Ghissassi ◽  
S. N. Thornton ◽  
S. Nicolaidis

The angiotensin receptor specificity, with respect to fluid intake, of the organum cavum prelamina terminalis (OCPLT), a recently discovered discrete forebrain structure with high sensitivity to angiotensin II (ANG II), was investigated. ANG II (10 ng) microinjected into the OCPLT significantly increased water consumption but did not induce intake of a hypertonic (3%) NaCl solution. Losartan, an ANG II type 1 (AT1) receptor-specific antagonist, produced dose-related (1-100 ng) inhibition of ANG II-induced drinking. The ANG II type 2 receptor-specific antagonist CGP-42112A was ineffective. Intake of the 3% NaCl solution in response to microinjection of either of the antagonists into the OCPLT was never observed. These findings suggest that water intake produced by microinjection of ANG II into the OCPLT is mediated by AT1 receptors uniquely and that, in contrast to other regions of the brain, these receptors do not induce salt intake when stimulated by ANG II.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Quaisar Ali ◽  
Yonnie Wu ◽  
Tadashi Inagami ◽  
Tahir Hussain

Angiotensin II acting via Angiotensin II type 2 receptors (AT2Rs) is believed to be protective against blood pressure increase and affects renal function under pathophysiological condition. Recently we have observed that stimulation of AT2Rs in male obese Zucker rats has shifted the two opposing arms of renin angiotensin system (RAS) i.e. ACE-Ang II-AT1 vs ACE2/Ang-(1-7)-Mas. Evidence suggests that estrogen regulates RAS, including AT2R in female mice. We hypothesized that AT2R has a gender specific regulation of RAS. In the present study, we investigated the role of AT2Rs in regulating RAS components in male and female mice. Kidney cortex from AT2R knockout (AT2RKO) male and female mice and wild type (WT) with similar background (C57BL/6) of 20 weeks of age were used in the study. The cortical ACE expression (ng ACE/μg tissue) was significantly increased in AT2RKO mice (3±0.02) compared to WT males (1.9±0.02). LC/MS analysis of cortical tissue revealed that Ang II was also significantly increased in AT2RKO mice (WT: 31±3, AT2RKO: 47±3 fmoles/mg tissue). Deletion of AT2R significantly increased AT1R (204%, 204 of 100) expression and had no effect on renin activity compared to WT males. The cortical expression of ACE2 activity (WT: 113±8, AT2RKO: 40±11, RFU/min), Ang-(1-7) levels (WT: 7.3±1.4, AT2RKO: 3±0.8 fmoles/mg tissue) and Mas receptor (AT2RKO: 54±15, % of WT) was significantly decreased in AT2RKO males compared to WT. The cortical expression of the AT2R and MasR was 2-fold greater in WT females compared to WT male. The renin activity (WT: 32±2, AT2RKO: 21±0.3, RFU/min) and MasR expression (WT: 187.5±55, AT2KO: 47±9) was significantly decreased in AT2RKO females compared to the female WT. Interestingly, Ang-(1-7) level (WT: 5.7±0.7, AT2RKO 2.6±0.7 fmoles/mg tissue) was decreased but no changes in ACE or ACE2 activity was observed in AT2KO females compared to their WT, suggesting a role of non-ACE2 pathway. This study suggests that AT2R regulates ACE/ACE2 ratio-Ang II-AT1R expression negatively only in males, whereas in females, it regulates Ang-(1-7) potentially via non-ACE2 pathway. Such changes indicate a gender specific mechanisms potentially associated with AT2R-mediated regulation of renal function and blood pressure control.


2004 ◽  
Vol 43 (8) ◽  
pp. 1473-1480 ◽  
Author(s):  
Yun-He Liu ◽  
Xiao-Ping Yang ◽  
Edward G. Shesely ◽  
Steadman S. Sankey ◽  
Oscar A. Carretero

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Angela E. Vinturache ◽  
Francine G. Smith

2006 ◽  
Vol 169 (5) ◽  
pp. 1577-1589 ◽  
Author(s):  
Hirokazu Okada ◽  
Tsutomu Inoue ◽  
Tomohiro Kikuta ◽  
Yusuke Watanabe ◽  
Yoshihiko Kanno ◽  
...  

2004 ◽  
Vol 287 (1) ◽  
pp. H126-H134 ◽  
Author(s):  
Blair E. Cox ◽  
Timothy A. Roy ◽  
Charles R. Rosenfeld

Intravenous angiotensin II (ANG II) increases uterine vascular resistance (UVR), whereas uterine intra-arterial infusions do not. Type 2 ANG II (AT2) receptors predominate in uterine vascular smooth muscle; this may reflect involvement of systemic type 1 ANG II (AT1) receptor-mediated α-adrenergic activation. To examine this, we compared systemic pressor and UVR responses to intravenous phenylephrine and ANG II without and with systemic or uterine α-receptor blockade and in the absence or presence of AT1 receptor blockade in pregnant and nonpregnant ewes. Systemic α-receptor blockade inhibited phenylephrine-mediated increases in mean arterial pressure (MAP) and UVR, whereas uterine α-receptor blockade alone did not alter pressor responses and resulted in proportionate increases in UVR and MAP. Although neither systemic nor uterine α-receptor blockade affected ANG II-mediated pressor responses, UVR responses decreased >65% and also were proportionate to increases in MAP. Systemic AT1 receptor blockade inhibited all responses to intravenous ANG II. In contrast, uterine AT1 receptor blockade + systemic α-receptor blockade resulted in persistent proportionate increases in MAP and UVR. Uterine AT2 receptor blockade had no effects. We have shown that ANG II-mediated pressor responses reflect activation of systemic vascular AT1 receptors, whereas increases in UVR reflect AT1 receptor-mediated release of an α-agonist and uterine autoregulatory responses.


Sign in / Sign up

Export Citation Format

Share Document