scholarly journals Effect of early dietary restriction on insulin action and secretion in the GK rat, a spontaneous model of NIDDM

2000 ◽  
Vol 278 (6) ◽  
pp. E1097-E1103 ◽  
Author(s):  
Carmen Alvarez ◽  
Danielle Bailbe ◽  
Françoise Picarel-Blanchot ◽  
Eric Bertin ◽  
Ana-Maria Pascual-Leone ◽  
...  

The availability of the Goto-Kakisaki (GK) rat model of non-insulin-dependent diabetes mellitus prompted us to test the effect of a limited period of undernutrition in previously diabetic young rats on their insulin secretion and insulin action during adult age. Four-week-old female GK rats were either food restricted (35% restriction, 15% protein diet) or protein and energy restricted (35% restriction, 5% protein diet) for 4 wk. Food restriction in the young GK rat lowered weight gain but did not aggravate basal hyperglycemia or glucose intolerance, despite a decrease in basal plasma insulin level. Furthermore, the insulin-mediated glucose uptake by peripheral tissues in the GK rat was clearly improved. We also found that food restriction, when it is coupled to overt protein deficiency in the young GK rat, altered weight gain more severely and slightly decreased basal hyperglycemia but conversely aggravated glucose tolerance. Improvement of basal hyperglycemia was related to repression of basal hepatic glucose hyperproduction, despite profound attenuation of basal plasma insulin level. Deterioration of tolerance to glucose was related to severe blunting of the residual glucose-induced insulin secretion. It is, however, likely that the important enhancement of the insulin-mediated glucose uptake helped to limit the deterioration of glucose tolerance.

Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 4047-4058 ◽  
Author(s):  
Yun-Jung Lee ◽  
Conglin Liu ◽  
Mengyang Liao ◽  
Galina K. Sukhova ◽  
Jun Shirakawa ◽  
...  

Prior studies demonstrated increased plasma IgE in diabetic patients, but the direct participation of IgE in diabetes or obesity remains unknown. This study found that plasma IgE levels correlated inversely with body weight, body mass index, and body fat mass among a population of randomly selected obese women. IgE receptor FcϵR1-deficient (Fcer1a−/−) mice and diet-induced obesity (DIO) mice demonstrated that FcϵR1 deficiency in DIO mice increased food intake, reduced energy expenditure, and increased body weight gain but improved glucose tolerance and glucose-induced insulin secretion. White adipose tissue from Fcer1a−/− mice showed an increased expression of phospho-AKT, CCAAT/enhancer binding protein-α, peroxisome proliferator-activated receptor-γ, glucose transporter-4 (Glut4), and B-cell lymphoma 2 (Bcl2) but reduced uncoupling protein 1 (UCP1) and phosphorylated c-Jun N-terminal kinase (JNK) expression, tissue macrophage accumulation, and apoptosis, suggesting that IgE reduces adipogenesis and glucose uptake but induces energy expenditure, adipocyte apoptosis, and white adipose tissue inflammation. In 3T3-L1 cells, IgE inhibited the expression of CCAAT/enhancer binding protein-α and peroxisome proliferator-activated receptor-γ, and preadipocyte adipogenesis and induced adipocyte apoptosis. IgE reduced the 3T3-L1 cell expression of Glut4, phospho-AKT, and glucose uptake, which concurred with improved glucose tolerance in Fcer1a−/− mice. This study established two novel pathways of IgE in reducing body weight gain in DIO mice by suppressing adipogenesis and inducing adipocyte apoptosis while worsening glucose tolerance by reducing Glut4 expression, glucose uptake, and insulin secretion.


2008 ◽  
Vol 8 (2) ◽  
pp. 131-134 ◽  
Author(s):  
Muhidin Hamamdžić ◽  
Boris Hrabač ◽  
Amer Alić ◽  
Eva Pašić-Juhas ◽  
Aida Hodžić

The aim of the study was to explore the effect of lactate on insulin-stimulated glucose uptake in rats. Thirty Wistar rats, weighing 250 - 300 g. were arbitrarily divided into one of three groups (n =10): insulin (1 IU/kg) treated group, lactate (80 mg/kg), and insulin plus lactate treated groups. Blood glucose levels were measured in venous samples collected from the tail vein over 3 hour period after insulin or/and lactate administration in 30-minute intervals.To estimate the influence of lactate on insulin blood level, a total of 20 rats were divided into 4 groups (n = 5): saline, insulin, lactate, and insulin plus lactate treated group, respectively.Sixty minutes after the appropriate application of the same doses of insulin, lactate, and lactate plus insulin, as in the previous part of the experiment, plasma insulin and blood glucose levels were determined in blood samples drawn from the abdominal aorta. Lactate in combination with insulin, in comparison to insulin application alone, caused a dramatic increase in plasma insulin level (p<0,001) and more profound hypoglicaemia (p<0,001). The results of this investigation indicate that lactate application significantly increases the rate of glucose uptake from peripheral blood caused by exogenous insulin action. The possible involvement of lactate in the mechanism of enhanced glucose uptake due to insulin action after physical exercise is discussed.


1999 ◽  
Vol 276 (1) ◽  
pp. E85-E93 ◽  
Author(s):  
Mark J. Holness ◽  
Mary C. Sugden

The study investigated whether a persistent impairment of insulin secretion resulting from mild protein restriction predisposes to loss of glucoregulatory control and impaired insulin action after the subsequent imposition of the diabetogenic challenge of high-fat feeding. Offspring of dams provided with either control (20% protein) diet (C) or an isocaloric restricted (8%) protein diet (PR) were weaned onto the maintenance diet with which their mothers had been provided. At 20 wk of age, protein restriction enhanced glucose tolerance despite impaired insulin secretion and an augmented and sensitized lipolytic response to norepinephrine in adipocytes. C and PR rats were then transferred to a high-fat diet (HF, 19% protein, 22% lipid, 34% carbohydrate) and sampled after 8 wk. These groups are termed C-HF and PR-HF. Glucose tolerance was impaired in PR-HF, but not C-HF, rats. Insulin-stimulated glucose disposal rates were significantly lower (by 30%; P < 0.01) in the PR-HF group than in the C-HF group, and a specific impairment of antilipolytic response of insulin was unmasked in adipocytes from PR-HF, but not C-HF, rats. The study demonstrates that antecedent protein restriction accelerates and augments the development of impaired glucoregulation and insulin resistance after high-fat feeding.


2011 ◽  
pp. 511-519 ◽  
Author(s):  
G. G. SCHWEITZER ◽  
C. M. CASTORENA ◽  
T. HAMADA ◽  
K. FUNAI ◽  
E. B. ARIAS ◽  
...  

Bradykinin can enhance skeletal muscle glucose uptake (GU), and exercise increases both bradykinin production and muscle insulin sensitivity, but bradykinin’s relationship with post-exercise insulin action is uncertain. Our primary aim was to determine if the B2 receptor of bradykinin (B2R) is essential for the post-exercise increase in GU by insulin-stimulated mouse soleus muscles. Wildtype (WT) and B2R knockout (B2RKO) mice were sedentary or performed 60 minutes of treadmill exercise. Isolated soleus muscles were incubated with [3H]-2-deoxyglucose ±insulin (60 or 100 μU/ml). GU tended to be greater for WT vs. B2RKO soleus with 60 μU/ml insulin (P=0.166) and was significantly greater for muscles with 100 μU/ml insulin (P<0.05). Both genotypes had significant exercise-induced reductions (P<0.05) in glycemia and insulinemia, and the decrements for glucose (~14 %) and insulin (~55 %) were similar between genotypes. GU tended to be greater for exercised vs. sedentary soleus with 60 μU/ml insulin (P=0.063) and was significantly greater for muscles with 100 μU/ml insulin (P<0.05). There were no significant interactions between genotype and exercise for blood glucose, plasma insulin or GU. These results indicate that the B2R is not essential for the exercise-induced decrements in blood glucose or plasma insulin or for the post-exercise increase in GU by insulin-stimulated mouse soleus muscle.


2001 ◽  
Vol 280 (1) ◽  
pp. E130-E142 ◽  
Author(s):  
Ben B. Yaspelkis ◽  
James R. Davis ◽  
Maziyar Saberi ◽  
Toby L. Smith ◽  
Reza Jazayeri ◽  
...  

In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg · kg−1 · day−1 sc), or food restriction (HF-FR) for 12–15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic β-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.


Sign in / Sign up

Export Citation Format

Share Document