Gastrointestinal Stem Cells. III. Emergent themes of liver stem cell biology: niche, quiescence, self-renewal, and plasticity

2006 ◽  
Vol 290 (2) ◽  
pp. G189-G193 ◽  
Author(s):  
Neil D. Theise

This essay will address areas of liver stem/progenitor cell studies in which consensus has emerged and in which controversy still prevails over consensus, but it will also highlight important themes that inevitably should be a focus of liver stem/progenitor cell investigations in coming years. Thus concepts regarding cell plasticity, the existence of a physiological/anatomic stem cell niche, and whether intrahepatic liver stem/progenitor cells comprise true stem cells or progenitor cells (or both) will be approached in some detail.

2012 ◽  
Vol 46 (2) ◽  
pp. 75-80
Author(s):  
Shamoli Bhattacharyya

ABSTRACT Mesenchymal stem cells have shown great promise as the source of adult stem cells for regenerative medicine. Present research efforts are directed at isolating these cells from various sources, growing them in vitro and maintaining their pluripotency as well as capacity for self renewal. It is crucial to identify the regulatory molecules which directly or indirectly control the proliferative status or influence the niche microenvironment. The main challenge is to understand the basic biology of the stem cells and manipulate them for further therapeutic applications. Considering their malignant potential, stem cells may be a double edged sword. While the benefits of these cells need to be harnessed judiciously, a significant amount of research is required before embarking on widespread use of this tool for the benefit of humanity. How to cite this article Bhattacharyya S. Advances and Applications in Stem Cell Biology. J Postgrad Med Edu Res 2012;46(2):75-80.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4209-4209
Author(s):  
Daniel J. Pearce ◽  
Catherine Simpson ◽  
Kirsty Allen ◽  
Ayad Eddaoudi ◽  
Derek Davies ◽  
...  

Abstract It has been postulated that as we age, accumulated damage causes stem cells to die by apoptosis. This could lead to a diminished stem cell pool and consequently a reduced organ regeneration potential that contributes to somatic senescence. Hematopoietic stem cells have evolved many mechanisms to cope with their exposure to toxins during life. Cell surface transporters and anti-toxic enzymes are highly expressed in hematopoietic stem cells. If toxins do get the opportunity to damage the DNA of stem cells then the cell is more likely to die by apoptosis than attempt DNA repair and risk an error. Summarised below are our results from an investigation of the frequency, phenotype, cell cycle status and repopulation potential (in young recipients) of C57BL6 side population (SP) cells from mice with a range of ages. The absolute frequency of SP cells increases with age (Figure-A). The proportion of the lineage negative, Sca-1+, c-kit+ (KLS) cell population that is an SP stem cell increases from ~1% to over 30% during the murine lifetime (red bars in Figure-B). These SP cells from older mice have a reduced 4-month competitive repopulation potential when compared to SP cells from younger mice but contain a similarly low proportion of phenotypically-defined mature cells (blue bars in Figure-B) and have a similar cell cycle profile and progenitor cell output (2% of 3 x 96 well plates for each). SP cells from older mice contained a higher proportion of SP cells with the highest efflux ability (61 vs 414 days, p=<0.001, n=6) Engrafted cells derived from old SP cells 4 months previously still displayed an increased SP frequency when compared to engrafted cells derived from SP cells of young mice. Hence, more progenitors or committed cells have not gained the SP ability; rather this difference in SP distribution reflects an age-dependent change in hematopoietic stem cell biology that is independent of the microenvironment. Specifically, the proportion of stem and progenitor cells (KLS) that is a stem cell (SP fraction of KLS) increases with age. We hypothesize that this may be a progressive enrichment of primitive cells over time via selection. As we age, accumulative damage to hematopoietic stem and progenitor cells causes more cells to die by apoptosis. It may be that the stem/progenitor cells with the lowest hoechst efflux ability are most susceptible to damage and hence most likely to die by apoptosis. Since the HSCs with the highest efflux of hoechst are thought to be the most primitive, it may be that there is an enrichment of primitive cells. This could account for the increased SP proportion observed within KLS cells. As there may be cells with ABC/G2 activity that is undetectable via the SP technique, selection of cells with a higher pump activity could also explain the increased SP frequency we observed. This hypothetical mechanism would also be independent of microenvirinment. In summary, we surmise that HSCs have a mechanism that copes with cellular damage while compensating for the reduced cellular output of HSCs with age by increasing the absolute number of HSCs. Figure Figure


2017 ◽  
Author(s):  
Wei Dai ◽  
Amy Peterson ◽  
Thomas Kenney ◽  
Denise J. Montell

AbstractAdult stem cells commonly give rise to transit-amplifying progenitors, whose progeny differentiate into distinct cell types. Signals within the stem cell niche maintain the undifferentiated state. However it is unclear whether or how niche signals might also coordinate fate decisions within the progenitor pool. Here we use quantitative microscopy to elucidate distinct roles for Wnt, Hedgehog (Hh), and Notch signalling in progenitor development in the Drosophila ovary. Follicle stem cells (FSCs) self-renew and produce precursors whose progeny adopt distinct polar, stalk, and main body cell fates. We show that a steep gradient of Wnt signalling maintains a multipotent state in proximally located progenitor cells by inhibiting expression of the cell fate determinant Eyes Absent (Eya). A shallower gradient of Hh signalling controls the proliferation to differentiation transition. The combination of Notch and Wnt signalling specifies polar cells. These findings reveal a mechanism by which multiple niche signals coordinate cell fate diversification of progenitor cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 708-708 ◽  
Author(s):  
Sarah E. Shaw ◽  
David N. Haylock ◽  
Hayley M. Johnston ◽  
Richard Lock ◽  
Susie K. Nilsson

Abstract Considerable evidence supports the proposal that the localisation of hemopoiesis to the bone marrow (BM) involves developmentally regulated adhesive interactions between primitive hemopoietic stem cells (HSC) and the hemopoietic microenvironment of the marrow. Previous studies in our laboratory demonstrate that HSC reside within an endosteal stem cell niche, and identified several key molecules that play critical roles in their attraction to, and retention and regulation within this region. We have previously described Hyaluronic acid (HA) as one of these key molecules and shown that human and murine HSC synthesise and express HA. HSC express the 3 HAS genes and synthesis of this glycosaminoglycan by HSC as well as by cells within the hemopoietic microenvironment is critical for HSC engraftment and for regulating the HSC pool in vivo. In addition, analysis of HAS 1 and 3 knockout mice identified HA synthesised by HAS 3 to be responsible for these effects. In the absence of HAS-3 synthase the endosteal region is devoid of HA, and the hemopoietic microenvironment is significantly impaired in its ability to attract and support HSC post-transplant as well as regulate the HSC pool in vivo. Furthermore, transplanted HSC isolated from HAS-3−/− mice have a reduced ability to lodge within the endosteal region and reconstitute hemopoiesis. In vitro, binding of HA by a surrogate ligand, HABP, also has a negative regulatory effect of HSC proliferation and differentiation. Together these data suggest that HA on the surface of HSC is critical in both their lodgement and subsequent quiescence within the hemopoietic stem cell niche. Analysis of a cohort of childhood ALL samples revealed a significant correlation between the length of first complete remission and HA synthesis, cell surface HA expression, HAS-3 expression, the distribution of leukemic cells following transplantation and the development of disease in a murine model. In addition, anti-sense inhibition of HAS-3 expression in the Pre-B ALL cell line NALM6, resulted in a significantly reduced time to onset of leukaemia within a NOD/SCID murine model. Furthermore, retroviral mediated overexpression of HAS-3 in this cell line resulted in 2.5-fold increase in mRNA, a 20-fold increase in cell surface HA and a significant decrease in the proliferation potential of these cells in culture. Furthermore, following transplantation of HAS-3 overexpressing NALM6 cells into NOD/SCID recipients there was a significant delay in the onset of leukemia compared to that seen following the transplant of unmanipulated NALM6 cells. This demonstrates a primary role of HAS-3 in the onset and progression of common ALL and that HA expression levels may provide a novel prognostic indictor for this leukaemia. Furthermore, initial studies of HA expression in other leukemic bone marrow samples revealed that cells from AML, CML and CLL also exhibit increased levels of HA, with a correlation between disease progression and HA synthesis and expression; HA levels were elevated at diagnosis, decreasing in remission and increasing again at relapse. Overall, our data is strongly suggestive of a key role for this polysaccharide in both normal and aberrant hemopoietic stem cell biology.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4046-4046 ◽  
Author(s):  
Michael Cross ◽  
Rudiger Alt ◽  
Lydia Schnapke-Hille ◽  
Thomas Riemer ◽  
Dietger Niederwieser

Abstract The hematopoietic stem cell niche presents a localised environment supporting the balanced maintenance, self-renewal and occasional expansion of the stem cell pool. These options are widely assumed to be regulated exclusively by signalling from specific combinations of stroma-bound or soluble ligands. However, a consideration of the rare conditions under which absolute numbers of stem cells increase in vivo as well as the selective pressures acting on regenerative systems during evolution has led us to propose a metabolic component to the stem cell niche which serves to limit cumulative damage, to avoid the selection of potentially oncogenic mutations and to tie symmetric division to slow proliferation. This would mean that traditional cell culture media based on “systemic” substrates such as glucose and glutamine may actively prevent the symmetric amplification of high quality stem cells, offering a possible explanation for the limited success in this area to date. To investigate this possibility, we have examined the effects of range of carbon and energy sources on the proliferation and maintenance of stem and progenitor cells. Our strategy is to screen a wide variety of culture conditions using murine FDCPmix cells, which are non-tumorigenic but have an innate tendency to amplify symmetrically in the presence of IL-3, and then to test key observations in human UCB CD133+ cells provided with SCF, TPO and FLT-3L. In both cell systems, we do indeed find an unusually low requirement for the systemic substrates glucose and glutamine normally included as major energy and carbon sources in cell culture media. Reducing glucose reduces the yield of committed cells from CD133+ cultures without affecting the accumulation of CD133+CD34+cKit+ progenitors. When provided with alternative substrates more likely to reflect a “niche” type environment, FDCPmix cells can be maintained for long periods in media containing only the trace levels of glucose or glutamine derived from dialysed serum, and show improved self-renewal under these conditions. We have also found that raising osmolarity reduces glucose dependence and simultaneously favours the maintenance both of self-renewing CFU (FDCPmix culture) and of CAFCweek13 (CD133+ culture). In parallel, the use of NMR and mass spectrometry techniques to profile intracellular metabolites in self-renewing and differentiating FDCPmix cells reveals a shift in the metabolite balance indicating reduced glycolysis in the early cells. Taken together, these results suggest that hematopoietic stem cells do indeed have remarkable metabolic characteristics consistent with adaptation to a metabolically limiting niche environment. It may therefore be necessary to identify niche substrates and to combine these with the relevant signalling environment in vitro in order to effectively increase stem cell numbers for research, stem cell transplantation and tissue engineering applications.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1493-1493
Author(s):  
Elizabeth Csaszar ◽  
Daniel Kirouac ◽  
Genevieve Gavigan ◽  
Suzan Imren ◽  
Michelle Miller ◽  
...  

Abstract Abstract 1493 Poster Board I-516 Predictive control of human hematopoietic stem cell (HSC) self-renewal would enable more effective strategies to treat hematologic disease. Although evidence suggests that both cell autonomous (stem cell-associated transcription factors) and cell non-autonomous (the stem cell niche) mechanisms regulate stem cell fate, the dynamic interplay between these regulatory axis are poorly understood. Using a defined synthetic stem cell niche, we have been investigating the role of the transcription factors HOXB4 and the engineered fusion gene between NUP98 and the homeodomain of HOXA10 (NUP98A10HD), provided as soluble membrane-permeable proteins, as clinically relevant reagents to enhance in vitro HSC self-renewal. To aid our understanding of interactions between these complex processes, we have developed systems biology-based approaches to describe and predict cell supportive and non-supportive cell-cell interaction networks. Using a controlled and automated system to achieve semi-continuous protein delivery, and an accompanying model to predict dynamic intracellular protein concentrations, we have optimized strategies for the addition of the TAT-HOXB4 and TAT-NUP98A10HD fusion proteins to umbilical cord blood cultures. Our results demonstrate that an optimized delivery scheme of 1.5nM (from day 0-4) and 6nM (from day 4-8) every 30min, produces stable intracellular levels of TAT-HOXB4, and results in a increase of primitive progenitor cells, as measured by colony counts from bulk long term culture-initiating cell (LTC-IC) assays, of 1.9x greater than the classic, non-optimized TAT-HOXB4 delivery scheme (40nM every 4h) and 3.1x greater than untreated control cells. Ongoing studies are extending these significantly enhanced primitive progenitor outputs to HSC self-renewal using the NOD/SCID repopulating cell assay. Our results thus far demonstrate that the nuclear concentrations of HSC-associated transcription factors can significantly impact stem cell self-renewal. In these studies we also observed, for the first time, that endogenously produced secreted factors limit HSC output, and that TAT-HOXB4 acts to desensitize the primitive blood progenitor cells to negative feedback regulation by secreted factors. As a means of prospectively regulating the levels of endogenously produced factors in culture, we have implemented a media delivery approach, in which cell culture media volume is adjusted throughout the culture period, to counteract increasing negative inhibitors by endogenously produced secreted factors. Using this “fed-batch” delivery approach, we have achieved significant (p<0.05) improvement in the total cell number (TNC), colony forming cells (CFCs), and LTC-ICs, of 4.6x, 4.9x, and 4.1x respectively, above the blood stem and progenitor numbers obtained from untreated control cells. Furthermore, data suggests that this non-autonomous regulation promotes HSC self-renewal for a more prolonged period in vitro, with total expansions after 12 days of culture reaching 80x for CFCs and 22x for LTC-ICs. Media dilution strategies have been optimized to further limit negative feedback from mature cell types by monitoring and counteracting rising concentrations of specific critical factors, such as TGF-β1. Collectively, these studies shed new insight into the complexity of strict HSC regulation to predictively enhance in vitro HSC self-renewal, and provide evidence that overcoming cell non-autonomous control of HSC self-renewal should enable novel strategies to enhance endogenous stem cell growth. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 7 (2) ◽  
pp. 150-161 ◽  
Author(s):  
Ahmed Mohyeldin ◽  
Tomás Garzón-Muvdi ◽  
Alfredo Quiñones-Hinojosa

2011 ◽  
Vol 212 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Emin Umit Bagriacik ◽  
Melek Yaman ◽  
Rauf Haznedar ◽  
Gulsan Sucak ◽  
Tuncay Delibasi

Bone marrow-derived mesenchymal stem cells are pluripotent cells that are capable of differentiating into a variety of cell types including neuronal cells, osteoblasts, chondrocytes, myocytes, and adipocytes. Despite recent advances in stem cell biology, neuroendocrine relations, particularly TSH interactions remain elusive. In this study, we investigated expression and biological consequence of TSH receptor (TSHR) interactions in mesenchymal stem cells of cultured human bone marrow. To the best of our knowledge, we demonstrated for the first time that human bone marrow-derived mesenchymal stem cells expressed a functional thyrotropin receptor that was capable of transducing signals through cAMP. We extended this study to explore possible pathways that could be associated directly or indirectly with the TSHR function in mesenchymal stem cells. Expression of 80 genes was studied by real-time PCR array profiles. Our investigation indicated involvements of interactions between TSH and its receptor in novel regulatory pathways, which could be the important mediators of self-renewal, maintenance, development, and differentiation in bone marrow-derived mesenchymal stem cells. TSH enhanced differentiation to the chondrogenic cell lineage; however, further work is required to determine whether osteoblastic differentiation is also promoted. Our results presented in this study have opened an era of regulatory events associated with novel neuroendocrine interactions of hypothalamic–pituitary axis in mesenchymal stem cell biology and differentiation.


2021 ◽  
Vol 22 (11) ◽  
pp. 5519
Author(s):  
Salvador C. Herrera ◽  
Erika A. Bach

The Jun N-terminal kinase (JNK) pathway is an evolutionary conserved kinase cascade best known for its roles during stress-induced apoptosis and tumor progression. Recent findings, however, have identified new roles for this pleiotropic pathway in stem cells during regenerative responses and in cellular plasticity. Here, we provide an overview of recent findings about the new roles of JNK signaling in stem cell biology using two well-established Drosophila models: the testis and the intestine. We highlight the pathway’s roles in processes such as proliferation, death, self-renewal and reprogramming, and discuss the known parallels between flies and mammals.


Sign in / Sign up

Export Citation Format

Share Document