Differential regulation of cyclin D1 and cell death by bile acids in primary rat hepatocytes

2007 ◽  
Vol 293 (1) ◽  
pp. G327-G334 ◽  
Author(s):  
Rui E. Castro ◽  
Joana D. Amaral ◽  
Susana Solá ◽  
Betsy T. Kren ◽  
Clifford J. Steer ◽  
...  

Ursodeoxycholic (UDCA) and tauroursodeoxycholic (TUDCA) acids modulate apoptosis and regulate cell-cycle effectors, including cyclin D1. In contrast, deoxycholic acid (DCA) induces cell death and cyclin D1. In this study, we explored the role of cyclin D1 in DCA-induced toxicity and further elucidated the antiapoptotic function of UDCA and TUDCA in primary rat hepatocytes. Cells were incubated with DCA and with or without UDCA or TUDCA for 8–30 h. In addition, hepatocytes were transfected with either an adenovirus expressing cyclin D1 or with a cyclin D1 reporter plasmid with or without bile acids. Finally, cells were cotransfected with short interfering RNA targeting p53. Unlike DCA, both UDCA and TUDCA reduced cyclin D1 expression and transcriptional activation, confirming our previous DNA microarray data. Furthermore, UDCA and TUDCA prevented DCA-induced cyclin D1 and cell death. Cyclin D1 overexpression increased DCA-induced Bax translocation, cytochrome c release, and apoptosis. However, UDCA and TUDCA were less efficient at decreasing cyclin D1 levels as well as DCA-induced changes with overexpression. Finally, after p53 silencing, the effects of cyclin D1 overexpression were almost completely abrogated, whereas UDCA and TUDCA cytoprotective potential was reestablished. In conclusion, cyclin D1 is a relevant player in modulating apoptosis by bile acids, in part through a p53-dependent mechanism.

2007 ◽  
Vol 46 ◽  
pp. S19
Author(s):  
R.E. Castro ◽  
J.D. Amaral ◽  
S. Sola ◽  
B.T. Kren ◽  
C.J. Steer ◽  
...  

2005 ◽  
Vol 99 (1) ◽  
pp. 81-83 ◽  
Author(s):  
Noritaka Kagaya ◽  
Akiko Kamiyoshi ◽  
Yoh-Ichi Tagawa ◽  
Soichiro Akamatsu ◽  
Katsuhiro Isoda ◽  
...  

2007 ◽  
Vol 405 (2) ◽  
pp. 269-276 ◽  
Author(s):  
Tom Litjens ◽  
Than Nguyen ◽  
Joel Castro ◽  
Edoardo C. Aromataris ◽  
Lynette Jones ◽  
...  

Repetitive hormone-induced changes in concentration of free cytoplasmic Ca2+ in hepatocytes require Ca2+ entry through receptor-activated Ca2+ channels and SOCs (store-operated Ca2+ channels). SOCs are activated by a decrease in Ca2+ concentration in the intracellular Ca2+ stores, but the molecular components and mechanisms are not well understood. Some studies with other cell types suggest that PLC-γ (phospholipase C-γ) is involved in the activation of receptor-activated Ca2+ channels and/or SOCs, independently of PLC-γ-mediated generation of IP3 (inositol 1,4,5-trisphosphate). The nature of the Ca2+ channels regulated by PLC-γ has not been defined clearly. The aim of the present study was to determine if PLC-γ is required for the activation of SOCs in liver cells. Transfection of H4IIE cells derived from rat hepatocytes with siRNA (short interfering RNA) targeted to PLC-γ1 caused a reduction (by approx. 70%) in the PLC-γ1 protein expression, with maximal effect at 72–96 h. This was associated with a decrease (by approx. 60%) in the amplitude of the ISOC (store-operated Ca2+ current) developed in response to intracellular perfusion with either IP3 or thapsigargin. Knockdown of STIM1 (stromal interaction molecule type 1) by siRNA also resulted in a significant reduction (approx. 80% at 72 h post-transfection) of the ISOC amplitude. Immunoprecipitation of PLC-γ1 and STIM1, however, suggested that under the experimental conditions these proteins do not interact with each other. It is concluded that the PLC-γ1 protein, independently of IP3 generation and STIM1, is required to couple endoplasmic reticulum Ca2+ release to the activation of SOCs in the plasma membrane of H4IIE liver cells.


2010 ◽  
Vol 112 (5) ◽  
pp. 1155-1163 ◽  
Author(s):  
Sulpicio G. Soriano ◽  
Qian Liu ◽  
Jing Li ◽  
Jia-Ren Liu ◽  
Xiao Hui Han ◽  
...  

Background Prolonged exposure to ketamine results in accelerated neurodegeneration and neurocognitive deficits in the neonatal rats. Experimental models of neurodegeneration have implicated reentry of postmitotic neurons into the cell cycle, leading to cell death. The authors hypothesize that the ketamine-induced neuroapoptosis is partially due to aberrant cycle cell reentry. To explore this hypothesis, the authors characterized the effect of ketamine on the cell cycle signaling pathway in the developing rodent brain in vivo and in vitro. Methods Postnatal day 7 rat pups and primary neurons were used for the experiments. Each rat pup received five intraperitoneal doses of either saline or ketamine (5, 10, and 20 mg/kg/dose) at 90-min intervals over 6 h. Primary neurons were exposed to varying concentrations of ketamine to determine the dose and duration effects. The expression of cell cycle proteins (cyclin D1, cyclin-dependent kinase 4, and E2F1), Bcl2-interacting mediator of cell death (Bim), and activated caspase-3 was determined. The effect of cyclin D1 knockdown by small interfering RNA was also examined in primary neurons incubated in ketamine. Results Ketamine mediated a dose- and time-dependent increase in expression of cell cycle proteins and activated caspase-3. Cyclin D1, cyclin-dependent kinase 4, E2F1, Bim, and cleaved caspase-3 expression increased at 12 h and peaked at 24 h in vitro. Knockdown of cyclin D1 by small interfering RNA attenuated Bim and cleaved caspase-3 expression. Conclusion These findings support a model in which ketamine induces aberrant cell cycle reentry, leading to apoptotic cell death in the developing rat brain.


2013 ◽  
Vol 58 ◽  
pp. S118
Author(s):  
M.B. Afonso ◽  
D.M.S. Ferreira ◽  
R.E. Castro ◽  
C.M.P. Rodrigues

Sign in / Sign up

Export Citation Format

Share Document