Comparison of gene expression and activation of transcription factors in organoid-derived monolayer intestinal epithelial cells and organoids

Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.

2003 ◽  
Vol 284 (2) ◽  
pp. G328-G339 ◽  
Author(s):  
P. Singh ◽  
X. Lu ◽  
S. Cobb ◽  
B. T. Miller ◽  
N. Tarasova ◽  
...  

Proliferation and carcinogenesis of the large intestinal epithelial cells (IEC) cells is significantly increased in transgenic mice that overexpress the precursor progastrin (PG) peptide. It is not known if the in vivo growth effects of PG on IEC cells are mediated directly or indirectly. Full-length recombinant human PG (rhPG1–80) was generated to examine possible direct effects of PG on IEC cells. Surprisingly, rhPG (0.1–1.0 nM) was more effective than the completely processed gastrin 17 (G17) peptide as a growth factor. Even though IEC cells did not express CCK1and CCK2receptors (-R), fluorescently labeled G17 and Gly-extended G17 (G-Gly) were specifically bound to the cells, suggesting the presence of binding proteins other than CCK1-R and CCK2-R on IEC cells. High-affinity ( Kd= 0.5–1.0 nM) binding sites for125I-rhPG were discovered on IEC cells that demonstrated relative binding affinity for gastrin-like peptides in the order PG ≥ COOH-terminally extended G17 ≥ G-Gly > G17 > *CCK-8 (* significant difference; P< 0.05). In conclusion, our studies demonstrate for the first time direct growth effects of the full-length precursor peptide on IEC cells in vitro that are apparently mediated by the high-affinity PG binding sites that were discovered on these cells.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S41-S41 ◽  
Author(s):  
Wenly Ruan ◽  
Melinda Engevik ◽  
Alexandra Chang-Graham ◽  
Joseph Hyser ◽  
James Versalovic

Abstract Background Reactive oxygen species (ROS) play a role in maintaining intestinal epithelial homeostasis and are normally kept at low levels via antioxidant compounds. Dysregulation of ROS can lead to intestinal inflammation and contribute to inflammatory bowel disease (IBD). Select gut microbes possess the enzymatic machinery to produce antioxidants whereas others can dysregulate levels of ROS. Our model microbe, Lactobacillus reuteri (ATCC PTA 6475), has been demonstrated to reduce intestinal inflammation in mice models. It contains the genes encoding two distinct GshA-like glutamylcysteine ligases. We hypothesize that L. reuteri can secrete γ-glutamylcysteine to suppress ROS, minimize NFκB activation and regulate secretion of e pithelial cytokines. Methods & Results Conditioned media from L. reuteri was analyzed via mass spectrometry to confirm the presence of γ-glutamylcysteine. All cysteine containing products including γ-glutamylcysteine were fluorescently tagged in the conditioned media and then incubated with HT29 cell monolayers as well as human jejunal enteroid (HJE) monolayers. γ-glutamylcysteine was demonstrated to enter intestinal epithelial cells based on microscopy. Next, a Thioltracker assay was used to show increased intracellular glutathione levels by L. reuteri secreted γ-glutamylcysteine. HT29 cells and HJEs were then treated with IL-1β or hydrogen peroxide, and L. reuteri metabolites as well as γ-glutamylcysteine significantly suppressed pro-inflammatory cytokine driven ROS and IL-8 production. L. reuteri secreted products also reduced activity of NFκB as determined by a luciferase reporter assay. γ-glutamylcysteine deficient mutants were generated by targeted mutagenesis of GshA genes, and these mutant L. reuteri strains had a diminished ability to suppress IL-8 production and ROS. To further test the role of L. reuteri secreted γ-glutamylcysteine in vivo, a 2,4,6-Trinitrobenzenesulfonic acid (TNBS)- induced mouse colitis model was used. Adolescent mice were orogavaged with PBS, L. reuteri, L. reuteri GshA2 mutant, or γ-glutamylcysteine for a week after which TNBS was rectally administered to induce colitis. We demonstrate that L. reuteri and γ-glutamylcysteine can suppress histologic inflammation compared to PBS control and L. reuteri GshA2 mutant groups. Conclusions Together these data indicate that L. reuteri secretes γ-glutamylcysteine which can enter the intestinal epithelial cells and modulate epithelial cytokine production. It acts via suppression of ROS and NFκB which then decreases IL-8 production. We are able to demonstrate this in vitro in both HT 29 cells and HJEs. We now also demonstrate this in vivo in a mouse colitis model. These experiments highlight a prominent role for ROS intermediates in microbiome-mammalian cell signaling processes involved in immune responses and intestinal inflammation.


2007 ◽  
Vol 51 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Katrin Lohner ◽  
Kerstin Schnäbele ◽  
Hannelore Daniel ◽  
Doris Oesterle ◽  
Gerhard Rechkemmer ◽  
...  

2002 ◽  
Vol 48 (5) ◽  
pp. 449-457 ◽  
Author(s):  
Gabriela Zárate ◽  
Vilma Morata De Ambrosini ◽  
Adriana Perez Chaia ◽  
Silvia González

Adhesion to the intestinal mucosa is generally considered an important property of probiotic microorganisms and has been related to many of their health benefits. This study investigated some factors that could affect or be involved in the adherence of Propionibacterium acidipropionici CRL 1198, a dairy strain with suggested probiotic effects and high adherence in vitro and in vivo to intestinal epithelial cells. In vitro adhesion of propionibacteria was decreased by gastric digestion but not affected by bile and pancreatic enzymes. Adherence was also decreased by pretreatment of bacterial cells with protease, sodium metaperiodate, and trichloroacetic acid, revealing that different features of the cell surface, like protein factors, carbohydrates, and teichoic acids, are involved in the process. Adherence to intestinal epithelial cells was enhanced by calcium and was dependent on other divalent cations. Adhesion to intestinal mucus was also demonstrated. The results should explain the metabolic effects in the host previously obtained with this strain and support the potential of Propionibacterium for development of new probiotics.Key words: propionibacteria, adhesion, probiotics.


2020 ◽  
Author(s):  
Marion Lenoir ◽  
Rebeca Martin ◽  
Edgar Torres-Maravilla ◽  
Sead Chadi ◽  
Pamela González-Dávila ◽  
...  

Abstract BackgroundThe commensal bacterium Faecalibacterium prausnitzii plays a key role in inflammatory bowel disease (IBD) pathogenesis and serves as a general health biomarker in humans. However, the host molecular mechanisms that underlie its anti-inflammatory effects remain unknown.MethodsA transcriptomic approach on human intestinal epithelial cells (HT-29) that were stimulated with TNF-α and exposed to F. prausnitzii culture supernatant (SN) was used. Modulation of the most upregulated gene after F. prausnitzii SN contact was validated both in vitro and in vivo.ResultsF. prausnitzii SN upregulates the expression of Dact3, a gene linked to the Wnt/JNK pathway. Interestingly, when we silenced Dact3 expression, the effect of F. prausnitzii SN was lost. Butyrate was identified as the F. prausnitzii effector responsible for Dact3 modulation. Dact3 upregulation was also validated in vivo in both healthy and inflamed mice treated with either F. prausnitzii SN or the live bacteria, respectively. Finally, we demonstrated by colon transcriptomics that gut microbiota directly influences Dact3 expression.ConclusionsOur results provide new clues about the host molecular mechanisms involved in the anti-inflammatory effects of the beneficial commensal bacterium F. prausnitzii.*Contributed equally to this work


Science ◽  
2019 ◽  
Vol 363 (6431) ◽  
pp. eaat4042 ◽  
Author(s):  
Mark S. Ladinsky ◽  
Leandro P. Araujo ◽  
Xiao Zhang ◽  
John Veltri ◽  
Marta Galan-Diez ◽  
...  

Commensal bacteria influence host physiology, without invading host tissues. We show that proteins from segmented filamentous bacteria (SFB) are transferred into intestinal epithelial cells (IECs) through adhesion-directed endocytosis that is distinct from the clathrin-dependent endocytosis of invasive pathogens. This process transfers microbial cell wall–associated proteins, including an antigen that stimulates mucosal T helper 17 (TH17) cell differentiation, into the cytosol of IECs in a cell division control protein 42 homolog (CDC42)–dependent manner. Removal of CDC42 activity in vivo led to disruption of endocytosis induced by SFB and decreased epithelial antigen acquisition, with consequent loss of mucosal TH17 cells. Our findings demonstrate direct communication between a resident gut microbe and the host and show that under physiological conditions, IECs acquire antigens from commensal bacteria for generation of T cell responses to the resident microbiota.


2012 ◽  
Vol 303 (3) ◽  
pp. G356-G366 ◽  
Author(s):  
Steven H. Young ◽  
Nora Rozengurt ◽  
James Sinnett-Smith ◽  
Enrique Rozengurt

We have examined the role of protein kinase D1 (PKD1) signaling in intestinal epithelial cell migration. Wounding monolayer cultures of intestinal epithelial cell line IEC-18 or IEC-6 induced rapid PKD1 activation in the cells immediately adjacent to the wound edge, as judged by immunofluorescence microscopy with an antibody that detects the phosphorylated state of PKD1 at Ser916, an autophosphorylation site. An increase in PKD1 phosphorylation at Ser916 was evident as early as 45 s after wounding, reached a maximum after 3 min, and persisted for ≥15 min. PKD1 autophosphorylation at Ser916 was prevented by the PKD family inhibitors kb NB 142-70 and CRT0066101. A kb NB 142-70-sensitive increase in PKD autophosphorylation was also elicited by wounding IEC-6 cells. Using in vitro kinase assays after PKD1 immunoprecipitation, we corroborated that wounding IEC-18 cells induced rapid PKD1 catalytic activation. Further results indicate that PKD1 signaling is required to promote migration of intestinal epithelial cells into the denuded area of the wound. Specifically, treatment with kb NB 142-70 or small interfering RNAs targeting PKD1 markedly reduced wound-induced migration in IEC-18 cells. To test whether PKD1 promotes migration of intestinal epithelial cells in vivo, we used transgenic mice that express elevated PKD1 protein in the small intestinal epithelium. Enterocyte migration was markedly increased in the PKD1 transgenic mice. These results demonstrate that PKD1 activation is one of the early events initiated by wounding a monolayer of intestinal epithelial cells and indicate that PKD1 signaling promotes the migration of these cells in vitro and in vivo.


2005 ◽  
Vol 93 (1) ◽  
pp. 21-29 ◽  
Author(s):  
L. Liu ◽  
L. Han ◽  
Daisy Y. L. Wong ◽  
Patrick Y. K. Yue ◽  
W. Y. Ha ◽  
...  

Si-Jun-Zi decoction (SJZD), a traditional Chinese herbal prescription, has been used clinically for treating patients with disorders of the digestive system. Previous studies indicated that the polysaccharides of SJZD (SJZPS) are the active components contributing towards its pharmacological effects in improving gastrointestinal function and immunity. However, the protective and restitutive effects on intestinal epithelial cells remain unknown. In the present study, SJZPS were first extracted and chemically characterized. Then their stimulatory and restitutive effects on intestinal epithelial cells (IEC-6 cells) were elicited by different in vitro models including migration of wounded IEC-6 cells and cell proliferation. Results indicated that SJZPS not only protects the cells against the harmful impairment of indomethacin but also enhances re-epithelialization of a wounded monolayer at an optimal dose of 100 μg/ml at 24 h incubation. To elucidate the modulatory effect of SJZPS on wounded IEC-6 cells at the molecular level, an oligonucleotide microarray was employed to study differential gene expression of SJZPS-treated IEC-6 cells and the candidate genes were validated by RT-PCR. There was increased expression of genes coding for ion channels and transporters, which are critical to cell migration and restoration of wounded intestinal cells, suggesting a possible mechanism for re-epithelialization. In conclusion, our data show for the first time that SJZPS can enhance intestinal restitution and protect against indomethacin-induced damage of intestinal epithelial cells. These findings provide new insight into the mechanism of action of a traditional Chinese herbal prescription, SJZD, in intestinal wound restitution.


Sign in / Sign up

Export Citation Format

Share Document