Differential regulation of Na+/H+exchange isoform activities by enteropathogenicE. coliin human intestinal epithelial cells

2004 ◽  
Vol 287 (2) ◽  
pp. G370-G378 ◽  
Author(s):  
Gail Hecht ◽  
Kim Hodges ◽  
Ravinder K. Gill ◽  
Fely Kear ◽  
Sangeeta Tyagi ◽  
...  

Enteropathogenic Escherichia coli (EPEC) is an important human intestinal foodborne pathogen associated with diarrhea, especially in infants and young children. Although EPEC produces characteristic attaching and effacing lesions and loss of microvilli, the pathophysiology of EPEC-associated diarrhea, particularly during early infection, remains elusive. The present studies were designed to examine the direct effects of EPEC infection on intestinal absorption via Na+/H+exchanger (NHE) isoforms. Caco-2 cells were infected with EPEC strain E2348/69 or nonpathogenic E. coli HB101 for a period of 60 to 120 min. Total NHE activity was significantly increased at 60 min, reaching approximately threefold increase after 90 min of EPEC infection. Similar findings were seen in HT-29 cells and T84 cells indicating that the response was not cell-line specific. Most surprising was the differential regulation of NHE2 and NHE3 by EPEC. Marked activation of NHE2 (300%) occurred, whereas significant inhibition (∼50%) of NHE3 activity was induced. The activity of basolateral isoform NHE1 was also significantly increased in response to EPEC infection. Mutations that disrupted the type III secretion system (TTSS) ablated the effect of EPEC on the activity of both NHE2 and NHE3. These results suggest that EPEC, through a TTSS-dependent mechanism, exerts differential effects on NHE isoform activity in intestinal epithelial cells. Additionally, NHEs do not appear to play any role in EPEC-mediated inflammation, because the NHE inhibitors amiloride and 5-( N-ethyl- N-isopropyl)amiloride did not prevent EPEC-mediated IκBα degradation.

2008 ◽  
Vol 76 (10) ◽  
pp. 4498-4508 ◽  
Author(s):  
Jie Zheng ◽  
Jianghong Meng ◽  
Shaohua Zhao ◽  
Ruby Singh ◽  
Wenxia Song

ABSTRACT Campylobacter jejuni and Campylobacter coli colonize and infect the intestinal epithelium and cause acute inflammatory diarrhea. The intestinal epithelium serves as a physical barrier to, and a sensor of, bacterial infection by secreting proinflammatory cytokines. This study examined the mechanisms for Campylobacter-induced secretion of the proinflammatory chemokine interleukin-8 (IL-8) by using polarized T84 human colonic epithelial cells as a model. C. jejuni increased the secretion of both IL-8 and tumor necrosis factor alpha (TNF-α) in polarized epithelial cells. However, the increase in IL-8 secretion was independent of Campylobacter-stimulated TNF-α secretion. Polarized T84 cells secreted IL-8 predominantly to the basolateral medium independently of the inoculation direction. While there was a significant correlation between the levels of IL-8 secretion and Campylobacter invasion, all 11 strains tested increased IL-8 secretion by polarized T84 cells despite their differences in adherence, invasion, and transcytosis efficiencies. Cell-free supernatants of Campylobacter-T84-cell culture increased IL-8 secretion to levels similar to those induced by live bacterial inoculation. The ability of the supernatant to induce IL-8 secretion was reduced by flagellum and cytolethal distending toxin (CDT) gene mutants, treatment of the supernatant with protease K or heat, or treatment of T84 cells with the Toll-like receptor (TLR) inhibitor MyD88 inhibitory peptide or chloroquine. NF-κB inhibitors or cdtB mutation plus MyD88 inhibitor, but not flaA cdtB double mutations, abolished the ability of the supernatant to induce IL-8 secretion. Taken together, our results demonstrate that Campylobacter-induced IL-8 secretion requires functional flagella and CDT and depends on the activation of NF-κB through TLR signaling and CDT in human intestinal epithelial cells.


2001 ◽  
Vol 69 (10) ◽  
pp. 6148-6155 ◽  
Author(s):  
Bryan P. Hurley ◽  
Cheleste M. Thorpe ◽  
David W. K. Acheson

ABSTRACT Shiga toxin-producing E. coli (STEC) is a food-borne pathogen that causes serious illness, including hemolytic-uremic syndrome (HUS). STEC colonizes the lower intestine and produces Shiga toxins (Stxs). Stxs appear to translocate across intestinal epithelia and affect sensitive endothelial cell beds at various sites. We have previously shown that Stxs cross polarized intestinal epithelial cells (IECs) via a transcellular route and remain biologically active. Since acute inflammatory infiltration of the gut and fecal leukocytes is seen in many STEC-infected patients and since polymorphonuclear leukocyte (PMN) transmigration across polarized IECs diminishes the IEC barrier function in vitro, we hypothesized that PMN transmigration may enhance Stx movement across IECs. We found that basolateral-to-apical transmigration of neutrophils significantly increased the movement of Stx1 and Stx2 across polarized T84 IECs in the opposite direction. The amount of Stx crossing the T84 barrier was proportional to the degree of neutrophil transmigration, and the increase in Stx translocation appears to be due to increases in paracellular permeability caused by migrating PMNs. STEC clinical isolates applied apically induced PMN transmigration across and interleukin-8 (IL-8) secretion from T84 cells. Of the 10 STEC strains tested, three STEC strains lackingeae and espB (eae- andespB-negative STEC strains) induced significantly more neutrophil transmigration and significantly greater IL-8 secretion thaneae- and espB-positive STEC or enteropathogenic E. coli. This study suggests that STEC interaction with intestinal epithelia induces neutrophil recruitment to the intestinal lumen, resulting in neutrophil extravasation across IECs, and that during this process Stxs may pass in greater amounts into underlying tissues, thereby increasing the risk of HUS.


2006 ◽  
Vol 69 (4) ◽  
pp. 768-774 ◽  
Author(s):  
JIE ZHENG ◽  
JIANGHONG MENG ◽  
SHAOHUA ZHAO ◽  
RUBY SINGH ◽  
WENXIA SONG

The abilities of 34 Campylobacter jejuni and 9 Campylobacter coli isolates recovered from retail meats to adhere to and invade human intestinal epithelial T84 cells were examined and compared with those of a well-characterized human clinical strain, C. jejuni 81-176, to better assess the pathogenic potential of these meat isolates. The meat isolates exhibited a wide range of adherence and invasion abilities; a few of the isolates adhered to and invaded T84 cells almost as well as did C. jejuni 81-176. There was a significant correlation between the adherence ability and the invasion ability of the Campylobacter isolates. The presence of eight putative virulence genes in these Campylobacter isolates that are potentially responsible for adherence and invasion or that encode cytolethal distending toxin was determined using PCR. All Campylobacter isolates possessed flaA, cadF, pldA, cdtA, cdtB, and cdtC, and most (91%) also contained the ciaB gene. However, the virB11 gene, carried by virulence plasmid pVir, was absent in almost all the Campylobacter isolates. Our findings indicated that C. jejuni and C. coli present in retail meat were diverse in their ability to adhere to and invade human intestinal epithelial cells and that the putative virulence genes were widespread among the Campylobacter isolates. Thus, despite of the presence of the putative virulence genes, only some but not all Campylobacter strains isolated from retail meat can effectively invade human intestinal epithelial cells in vitro.


2007 ◽  
Vol 74 (4) ◽  
pp. 1087-1093 ◽  
Author(s):  
Anne Müsken ◽  
Martina Bielaszewska ◽  
Lilo Greune ◽  
Christian H. Schweppe ◽  
Johannes Müthing ◽  
...  

ABSTRACT The sfp gene cluster, unique to sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:NM strains, encodes fimbriae that mediate mannose-resistant hemagglutination in laboratory E. coli strains but are not expressed in wild-type SF EHEC O157:NM strains under standard laboratory conditions. We investigated whether Sfp fimbriae are expressed under conditions that mimic the intestinal environment and whether they contribute to the adherence of SF EHEC O157:NM strains to human intestinal epithelial cells. The transcription of sfpA (encoding the major fimbrial subunit) was upregulated in all strains investigated, and all expressed SfpA and possessed fimbriae that reacted with an anti-SfpA antibody when the strains were grown on solid media under anaerobic conditions. Sfp expression was absent under aerobic conditions and in liquid media. Sfp upregulation under anaerobic conditions was significantly higher on blood agar and a medium simulating the colonic environment than on a medium simulating the ileal environment (P < 0.05). The induction of Sfp fimbriae in SF E. coli O157:NM strains correlates with increased adherence to Caco-2 and HCT-8 cells. Our data indicate that the expression of Sfp fimbriae in SF E. coli O157:NM strains is induced under conditions resembling those of the natural site of infection and that Sfp fimbriae may contribute to the adherence of the organisms to human intestinal epithelium.


2009 ◽  
Vol 296 (1) ◽  
pp. G78-G92 ◽  
Author(s):  
Irina Malyukova ◽  
Karen F. Murray ◽  
Chengru Zhu ◽  
Edgar Boedeker ◽  
Anne Kane ◽  
...  

Shiga toxin 1 and 2 production is a cardinal virulence trait of enterohemorrhagic Escherichia coli infection that causes a spectrum of intestinal and systemic pathology. However, intestinal sites of enterohemorrhagic E. coli colonization during the human infection and how the Shiga toxins are taken up and cross the globotriaosylceramide (Gb3) receptor-negative intestinal epithelial cells remain largely uncharacterized. We used samples of human intestinal tissue from patients with E. coli O157:H7 infection to detect the intestinal sites of bacterial colonization and characterize the distribution of Shiga toxins. We further used a model of largely Gb3-negative T84 intestinal epithelial monolayers treated with B-subunit of Shiga toxin 1 to determine the mechanisms of non-receptor-mediated toxin uptake. We now report that E. coli O157:H7 were found at the apical surface of epithelial cells only in the ileocecal valve area and that both toxins were present in large amounts inside surface and crypt epithelial cells in all tested intestinal samples. Our in vitro data suggest that macropinocytosis mediated through Src activation significantly increases toxin endocytosis by intestinal epithelial cells and also stimulates toxin transcellular transcytosis. We conclude that Shiga toxin is taken up by human intestinal epithelial cells during E. coli O157:H7 infection regardless of the presence of bacterial colonies. Macropinocytosis might be responsible for toxin uptake by Gb3-free intestinal epithelial cells and transcytosis. These observations provide new insights into the understanding of Shiga toxin contribution to enterohemorrhagic E. coli-related intestinal and systemic diseases.


Sign in / Sign up

Export Citation Format

Share Document