Effect of vagus, gastric inhibitory polypeptide, and HCl on gastrin and somatostatin release from perfused pig antrum

1983 ◽  
Vol 244 (5) ◽  
pp. G515-G522 ◽  
Author(s):  
J. J. Holst ◽  
S. L. Jensen ◽  
S. Knuhtsen ◽  
O. V. Nielsen ◽  
J. F. Rehfeld

The porcine antrum was isolated with the pancreas and perfused in vitro with an artificial medium supplemented with erythrocytes. The vagal innervation was preserved. Effluent was collected from the portal vein as well as from a vein directly draining the antrum. Electrical vagal stimulation increased gastrin output and inhibited somatostatin output. Intraluminal hydrochloric acid had the opposite effect. Gastric inhibitory polypeptide (GIP) in physiological concentrations (90 and 450 pmol/l) increased somatostatin output, inhibited gastrin output, and potentiated the effect of HCl on somatostatin release. Vagal stimulation, however, abolished the GIP effect on somatostatin output. Thus gastrin and somatostatin outputs were always inversely affected by the applied stimuli, suggestive of somatostatin-mediated control of gastrin secretion. GIP may exert its effects via local somatostatin release.

1992 ◽  
Vol 263 (5) ◽  
pp. G709-G718 ◽  
Author(s):  
M. Schemann ◽  
D. Grundy

Myenteric "command neurons" are thought to be the interface between extrinsic and intrinsic controls of gut functions and are thought to be responsible for transmission of vagal impulses to enteric microcircuits. To identify, electrophysiologically, myenteric neurons responding to electrical stimulation of the vagus, we developed an in vitro preparation of the gastric myenteric plexus in which the vagal innervation was preserved. The majority of myenteric neurons [102 of 155 (66%)] received fast excitatory postsynaptic potentials (fEPSPs) after stimulation of the vagus. The proportion of neurons receiving vagal input was highest at the lesser curve (98%) and decreased gradually when recordings were made from neurons located toward the greater curve. Only a small proportion of neurons (4 of 85 cells) showed a slow EPSP after a burst of vagal stimulation. No postsynaptic inhibitory potentials were observed. There was no preferential vagal input to either gastric I, gastric II, or gastric III neurons. The fEPSPs were due to the release of acetylcholine acting postsynaptically on nicotinic receptors. The behavior of the fEPSPs suggests multiple vagal inputs to a majority of myenteric neurons. Our observations call into question the concept of enteric command neurons in favor of a divergent vagal input with widespread modulatory influences over gastric enteric neurotransmission.


1985 ◽  
Vol 248 (4) ◽  
pp. E425-E431 ◽  
Author(s):  
S. Nishi ◽  
Y. Seino ◽  
J. Takemura ◽  
H. Ishida ◽  
M. Seno ◽  
...  

The effect of electrical stimulation of the vagus nerves on the release of immunoreactive gastrin-releasing peptide (GRP), gastrin, and somatostatin was investigated using the isolated perfused rat stomach. Electrical stimulation (10 Hz, 1 ms duration, 10 V) of the peripheral end of the subdiaphragmatic vagal trunks produced a significant increase in both GRP and gastrin but a decrease in somatostatin. The infusion of atropine sulfate at a concentration of 10(-5) M augmented GRP release and reversed the decrease in somatostatin release in response to vagal stimulation to an increase above basal levels. However, the gastrin response to vagal stimulation was not affected by atropine. The infusion of hexamethonium bromide at a concentration of 10(-4) M significantly suppressed GRP release but did not affect gastrin secretion in response to vagal stimulation. On the other hand, the somatostatin response to vagal stimulation was completely abolished by hexamethonium. These findings lead us to conclude that the intramural GRP neurons might play an important role in the regulation of gastrin as well as somatostatin secretion and that somatostatin secretion may be controlled not only by a cholinergic inhibitory neuron but also by a noncholinergic, e.g., peptidergic stimulatory neuron, both of which may be regulated through preganglionic vagal fibers via nicotinic receptors. In addition, because the infusion of 10(-7) M GRP suppressed the somatostatin secretion, we suggest that either GRP should be excluded from the list of candidates for the noncholinergic stimulatory neurotransmitter for somatostatin secretion or that there are different mechanisms of action for endogenous and exogenous GRP.


1987 ◽  
Vol 253 (5) ◽  
pp. G643-G649 ◽  
Author(s):  
J. J. Holst ◽  
S. Knuhtsen ◽  
C. Orskov ◽  
T. Skak-Nielsen ◽  
S. S. Poulsen ◽  
...  

We extracted gastrin-releasing peptide (GRP) and its C-terminal decapeptide corresponding to 6.4 and 6.8 pmol/g from pig antrum mucosa. By immunohistochemistry GRP was localized to mucosal, submucosal, and myenteric nerve fibers. A few nerve cell bodies were also identified. Using isolated perfused pig antrum with intact vagal innervation, we found concomitant, atropine-resistant release of GRP and gastrin during electrical stimulation of the vagal nerves. Intra-arterial GRP at 10(-11)-10(-10) mol/l caused up to fivefold, dose-dependent increases in gastrin secretion; higher doses were less effective and completely desensitized the gastrin cells for the lower doses. After desensitization, vagal stimulation no longer produced gastrin secretion. The substance P antagonist [D-Arg, D-Pro, D-Trp, Leu]-substance P, described as also antagonizing the actions of bombesin, decreased the gastrin response to GRP and abolished the effect of vagal stimulation. The available evidence strongly suggests that GRP nerves are responsible for the stimulatory vagal effects on gastrin secretion in the pig.


2019 ◽  
Vol 98 (9) ◽  
pp. 350-355

Introduction: There is evidence that mesenchymal stem cells (MSCs) could trans-differentiate into the liver cells in vitro and in vivo and thus may be used as an unfailing source for stem cell therapy of liver disease. Combination of MSCs (with or without their differentiation in vitro) and minimally invasive procedures as laparoscopy or Natural Orifice Transluminal Endoscopic Surgery (NOTES) represents a chance for many patients waiting for liver transplantation in vain. Methods: Over 30 millions of autologous MSCs at passage 3 were transplanted via the portal vein in an eight months old miniature pig. The deposition of transplanted cells in liver parenchyma was evaluated histologically and the trans-differential potential of CM-DiI labeled cells was assessed by expression of pig albumin using immunofluorescence. Results: Three weeks after transplantation we detected the labeled cells (solitary, small clusters) in all 10 samples (2 samples from each lobe) but no diffuse distribution in the samples. The localization of CM-DiI+ cells was predominantly observed around the portal triads. We also detected the localization of albumin signal in CM-DiI labeled cells. Conclusion: The study results showed that the autologous MSCs (without additional hepatic differentiation in vitro) transplantation through the portal vein led to successful infiltration of intact miniature pig liver parenchyma with detectable in vivo trans-differentiation. NOTES as well as other newly developed surgical approaches in combination with cell therapy seem to be very promising for the treatment of hepatic diseases in near future.


Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100872
Author(s):  
Morten Steen Svarer Hansen ◽  
Kent Søe ◽  
Caroline Gorvin ◽  
Morten Frost

1985 ◽  
Vol 248 (1) ◽  
pp. H89-H97 ◽  
Author(s):  
N. Takahashi ◽  
M. J. Barber ◽  
D. P. Zipes

The route efferent vagal fibers travel to reach the left ventricle is not clear and was the subject of this investigation. We measured left ventricular and septal effective refractory period (ERP) changes during vagal stimulation and a constant infusion of norepinephrine, before and after phenol was applied at selected sites of the heart to interrupt efferent vagal fibers that may be traveling in that area. Phenol applied to the atrioventricular (AV) groove between the origin of the right coronary artery anteriorly to the posterior descending branch of the circumflex coronary artery completely eliminated vagal-induced prolongation of ERP in the anterior and posterior left ventricular free wall and reduced, but did not eliminate, ERP prolongation in the septum. A large (3-cm radius) epicardial circle of phenol prevented vagal-induced ERP prolongation within the circle in all dogs, while a small (1-cm radius) epicardial circle of phenol failed to prevent vagal-induced ERP changes within the circle in any dog. An intermediate (2-cm radius) circle eliminated vagal effects on ERP in 13 of 18 dogs. Arcs of phenol, to duplicate the upper portion of the circle, applied sequentially from apex to base eliminated efferent vagal effects only when painted near or at the AV groove. We conclude that the majority of efferent vagal fibers enroute to innervate the anterior and posterior left ventricular epicardium cross the AV groove within 0.25-0.5 mm (depth of phenol destruction) of the epicardial surface.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 20 (7) ◽  
pp. 1644-1651 ◽  
Author(s):  
Katsushi Tsukiyama ◽  
Yuichiro Yamada ◽  
Chizumi Yamada ◽  
Norio Harada ◽  
Yukiko Kawasaki ◽  
...  

Abstract Calcium plays a fundamental role as second messenger in intracellular signaling and bone serves as the body’s calcium reserve to tightly maintain blood calcium levels. Calcium in ingested meal is the main supply and inadequate calcium intake causes osteoporosis and bone fracture. Here, we describe a novel mechanism of how ingested calcium is deposited on bone. Meal ingestion elicits secretion of the gut hormone gastric inhibitory polypeptide (GIP) from endocrine K cells in the duodenum. Bone histomorphometrical analyses revealed that bone formation parameters in the mice lacking GIP receptor (GIPR−/−) were significantly lower than those of wild-type (GIPR+/+) mice, and that the number of osteoclasts, especially multinuclear osteoclasts, was significantly increased in GIPR−/− mice, indicating that GIPR−/− mice have high-turnover osteoporosis. In vitro examination showed the percentage of osteoblastic cells undergoing apoptosis to be significantly decreased in the presence of GIP. Because GIPR−/− mice exhibited an increased plasma calcium concentration after meal ingestion, GIP directly links calcium contained in meal to calcium deposition on bone.


PEDIATRICS ◽  
1978 ◽  
Vol 62 (4) ◽  
pp. 620-621
Author(s):  
Gerald W. Fischer ◽  
James W. Bass ◽  
George H. Lowell ◽  
Martin H. Crumrine

The article by Bortolussi et al. on pneumococcal septicemia and meningitis in the neonat (Pediatrics 60:352, September 1977) was of great interest to us, since we have been analyzing the effect of antibody directed against Streptococcus pneumoniae on group B Streptococcus type III. We have recently shown (unpublished data) that antibody directed against S. pneumoniae type 14 precipitates the hot hydrochloric acid-extracted polysaccharide antigen of group B Streptococcus type III. Further studies have shown that this antibody is opsonic for group B Streptococcus type III in an in vitro bactericidal assay and protective in a suckling rat model of group B Streptococcus type III sepsis.1


1992 ◽  
Vol 262 (4) ◽  
pp. H1122-H1127 ◽  
Author(s):  
D. D. Lund ◽  
G. A. Davey ◽  
A. R. Subieta ◽  
B. J. Pardini

Compensatory recovery by the intact vagal innervation after unilateral vagotomy was investigated by measuring parasympathetic-mediated control of heart rate in beta-adrenergic-blocked rabbits. Direct contralateral vagal nerve stimulation produced greater bradycardia in anesthetized rabbits with chronic vagotomy compared with acutely vagotomized controls. Vagal stimulation during acetylcholinesterase inhibition by physostigmine and direct neuroeffector stimulation by methacholine indicated that a change in metabolism of the neurotransmitter or an increased sensitivity of the tissue to acetylcholine were not responsible for augmentation of vagal responses. Baroreflex control of heart rate in response to an increase in arterial pressure was also tested in urethan-anesthetized rabbits. There was a significant reduction in the prolongation of the R-R interval during baroreflex activation acutely after midcervical vagotomy. These values were subsequently above control levels in rabbits 28 days after vagotomy. In conscious rabbits, the decrease in baroreflex control of heart rate progressively recovered to control levels within 6 days. These results suggest that the recovery mechanism after unilateral vagotomy may be related to peripheral and central compensatory changes in the intact contralateral vagus nerve.


2017 ◽  
Vol 313 (3) ◽  
pp. H676-H686 ◽  
Author(s):  
Bridget M. Seitz ◽  
Hakan S. Orer ◽  
Teresa Krieger-Burke ◽  
Emma S. Darios ◽  
Janice M. Thompson ◽  
...  

Serotonin [5-hydroxytryptamine (5-HT)] causes relaxation of the isolated superior mesenteric vein, a splanchnic blood vessel, through activation of the 5-HT7 receptor. As part of studies designed to identify the mechanism(s) through which chronic (≥24 h) infusion of 5-HT lowers blood pressure, we tested the hypothesis that 5-HT causes in vitro and in vivo splanchnic venodilation that is 5-HT7 receptor dependent. In tissue baths for measurement of isometric contraction, the portal vein and abdominal inferior vena cava relaxed to 5-HT and the 5-HT1/7 receptor agonist 5-carboxamidotryptamine; relaxation was abolished by the 5-HT7 receptor antagonist SB-269970. Western blot analyses showed that the abdominal inferior vena cava and portal vein express 5-HT7 receptor protein. In contrast, the thoracic vena cava, outside the splanchnic circulation, did not relax to serotonergic agonists and exhibited minimal expression of the 5-HT7 receptor. Male Sprague-Dawley rats with chronically implanted radiotelemetry transmitters underwent repeated ultrasound imaging of abdominal vessels. After baseline imaging, minipumps containing vehicle (saline) or 5-HT (25 μg·kg−1·min−1) were implanted. Twenty-four hours later, venous diameters were increased in rats with 5-HT-infusion (percent increase from baseline: superior mesenteric vein, 17.5 ± 1.9; portal vein, 17.7 ± 1.8; and abdominal inferior vena cava, 46.9 ± 8.0) while arterial pressure was decreased (~13 mmHg). Measures returned to baseline after infusion termination. In a separate group of animals, treatment with SB-269970 (3 mg/kg iv) prevented the splanchnic venodilation and fall in blood pressure during 24 h of 5-HT infusion. Thus, 5-HT causes 5-HT7 receptor-dependent splanchnic venous dilation associated with a fall in blood pressure. NEW & NOTEWORTHY This research is noteworthy because it combines and links, through the 5-HT7 receptor, an in vitro observation (venorelaxation) with in vivo events (venodilation and fall in blood pressure). This supports the idea that splanchnic venodilation plays a role in blood pressure regulation.


Sign in / Sign up

Export Citation Format

Share Document