CaMKII-dependent reactivation of SR Ca2+ uptake and contractile recovery during intracellular acidosis

2002 ◽  
Vol 283 (1) ◽  
pp. H193-H203 ◽  
Author(s):  
Noriyuki Nomura ◽  
Hiroshi Satoh ◽  
Hajime Terada ◽  
Masaki Matsunaga ◽  
Hiroshi Watanabe ◽  
...  

In hearts, intracellular acidosis disturbs contractile performance by decreasing myofibrillar Ca2+ response, but contraction recovers at prolonged acidosis. We examined the mechanism and physiological implication of the contractile recovery during acidosis in rat ventricular myocytes. During the initial 4 min of acidosis, the twitch cell shortening decreased from 2.3 ± 0.3% of diastolic length to 0.2 ± 0.1% (means ± SE, P < 0.05, n = 14), but in nine of these cells, contractile function spontaneously recovered to 1.5 ± 0.3% at 10 min ( P < 0.05 vs. that at 4 min). During the depression phase, both the diastolic intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ transient (CaT) amplitude increased, and the twitch [Ca2+]i decline prolonged significantly ( P < 0.05). In the cells that recovered, a further increase in CaT amplitude and a reacceleration of twitch [Ca2+]i decline were observed. The increase in diastolic [Ca2+]i was less extensive than the increase in the cells that did not recover ( n = 5). Blockade of sarcoplasmic reticulum (SR) function by ryanodine (10 μM) and thapsigargin (1 μM) or a selective inhibitor of Ca2+-calmodulin kinase II, 2-[ N- (2-hydroxyethyl)- N-(4-methoxybenzenesulfonyl)] amino- N-(4-chlorocinnamyl)- N-methyl benzylamine (1 μM) completely abolished the reacceleration of twitch [Ca2+]i decline and almost eliminated the contractile recovery. We concluded that during prolonged acidosis, Ca2+-calmodulin kinase II-dependent reactivation of SR Ca2+ uptake could increase SR Ca2+ content and CaT amplitude. This recovery can compensate for the decreased myofibrillar Ca2+ response, but may also cause Ca2+ overload after returning to physiological pHi.

1998 ◽  
Vol 275 (3) ◽  
pp. H977-H987 ◽  
Author(s):  
J. T. Hulme ◽  
C. H. Orchard

The effect of acidosis on Ca2+ uptake and release by the sarcoplasmic reticulum (SR) of rat ventricular myocytes has been investigated. Intracellular Ca2+concentration ([Ca2+]i) was monitored using fura 2; the L-type Ca2+ current ( I Ca) was monitored using the perforated patch-clamp technique. Acidosis was produced either by superfusing the cells with an acid solution (intracellular and extracellular acidosis) or by NH4Cl withdrawal (intracellular acidosis). Both types of acidosis increased the amplitude, and slowed the declining phase, of the Ca2+transient. Application of caffeine produced a rise of [Ca2+]i, which declined in the continued presence of caffeine; the declining phase was slowed by the acid solution but was unaffected by NH4Cl withdrawal. Acidosis decreased the fraction of the caffeine-induced release that was released by electrical stimulation but had no effect on I Ca. It is concluded that acidosis inhibits SR Ca2+ uptake and Ca2+-induced Ca2+ release in intact myocytes but that these effects are compensated by an increase in SR Ca2+ content secondary to a rise in cytoplasmic [Ca2+].


1998 ◽  
Vol 85 (6) ◽  
pp. 2159-2168 ◽  
Author(s):  
Bradley M. Palmer ◽  
Anne M. Thayer ◽  
Steven M. Snyder ◽  
Russell L. Moore

The effects of run endurance training and fura 2 loading on the contractile function and Ca2+ regulation of rat left ventricular myocytes were examined. In myocytes not loaded with fura 2, the maximal extent of myocyte shortening was reduced with training under our pacing conditions [0.5 Hz at 2.0 and 0.75 mM external Ca2+ concentration ([Ca2+]o)], although training had no effect on the temporal characteristics. The “light” loading of myocytes with fura 2 markedly suppressed (∼50%) maximal shortening in the sedentary and trained groups, although the temporal characteristics of myocyte shortening were significantly prolonged in the trained group. No discernible differences in the dynamic characteristics of the intracellular Ca2+ concentration ([Ca2+]) transient were detected at 2.0 mM [Ca2+]o, although peak [Ca2+] and rate of [Ca2+] rise during caffeine contracture were greater in the trained state at 0.75 mM [Ca2+]o. We conclude that training induced a diminished myocyte contractile function under the conditions studied here and a more effective coupling of inward Ca2+ current to sarcoplasmic reticulum Ca2+ release at low [Ca2+]o, and that fura 2 and its loading vehicle DMSO significantly alter the intrinsic characteristics of myocyte contractile function and Ca2+ regulation.


1998 ◽  
Vol 274 (1) ◽  
pp. H8-H17 ◽  
Author(s):  
Bradley J. Martin ◽  
Hector H. Valdivia ◽  
Rolf Bünger ◽  
Robert D. Lasley ◽  
Robert M. Mentzer

Pyruvate has been shown to be a metabolic inotrope in the myocardium. In millimolar concentrations, it has been shown to increase both myocardial phosphorylation potential and the cytosolic [NAD+]-to-[NADH] ratio. To determine if changes in these parameters can alter intracellular Ca2+ concentration ([Ca2+]i) and hence contractile function, Ca2+ transients and cell shortening (CS) were measured in isolated rat ventricular myocytes superfused with a physiological N-2-hydroxyethylpiperazine- N′-2-ethanesulfonic acid buffer (11 mmol/l glucose) with and without additional pyruvate,l-lactate, acetate, or isoproterenol. The addition of 5 mmol/l pyruvate resulted in a 33% increase in CS and a 39% increase in systolic [Ca2+]i. These pyruvate effects were 70% of those observed with 100 nmol/l isoproterenol. The mitochondrial monocarboxylate transport inhibitor α-cyano-4-hydroxycinnamate (250 μmol/l) strongly inhibited pyruvate inotropy, suggesting a substantial obligatory coupling between pyruvate inotropism and its oxidation by the mitochondria. A possible role of the cytosolic [NAD+]-to-[NADH] ratio was assessed by comparing the effects of 20 mmol/ll-lactate to those of equimolar pyruvate. In contrast to 20 mmol/l pyruvate, excess l-lactate failed to appreciably increase CS or systolic [Ca2+]i. The findings imply that, at levels substantially above 5 mmol/l, a portion of pyruvate inotropism might be due to extreme cytosolic [NAD+]-to-[NADH] ratios. This study is the first evidence that augmented [Ca2+]itransients are most likely the mechanism of cardiac pyruvate inotropism.


2008 ◽  
Vol 294 (4) ◽  
pp. C966-C976 ◽  
Author(s):  
Sunwoo Lee ◽  
Joon-Chul Kim ◽  
Yuhua Li ◽  
Min-Jeong Son ◽  
Sun-Hee Woo

This study examines whether fluid pressure (FP) modulates the L-type Ca2+ channel in cardiomyocytes and investigates the underlying cellular mechanism(s) involved. A flow of pressurized (∼16 dyn/cm2) fluid, identical to that bathing the myocytes, was applied onto single rat ventricular myocytes using a microperfusion method. The Ca2+ current ( ICa) and cytosolic Ca2+ signals were measured using a whole cell patch-clamp and confocal imaging, respectively. It was found that the FP reversibly suppressed ICa (by 25%) without altering the current-voltage relationships, and it accelerated the inactivation of ICa. The level of ICa suppression by FP depended on the level and duration of pressure. The Ba2+ current through the Ca2+ channel was only slightly decreased by the FP (5%), suggesting an indirect inhibition of the Ca2+ channel during FP stimulation. The cytosolic Ca2+ transients and the basal Ca2+ in field-stimulated ventricular myocytes were significantly increased by the FP. The effects of the FP on the ICa and on the Ca2+ transient were resistant to the stretch-activated channel inhibitors, GsMTx-4 and streptomycin. Dialysis of myocytes with high concentrations of BAPTA, the Ca2+ buffer, eliminated the FP-induced acceleration of ICa inactivation and reduced the inhibitory effect of the FP on ICa by ≈80%. Ryanodine and thapsigargin, abolishing sarcoplasmic reticulum Ca2+ release, eliminated the accelerating effect of FP on the ICa inactivation, and they reduced the inhibitory effect of FP on the ICa. These results suggest that the fluid pressure indirectly suppresses the Ca2+ channel by enhancing the Ca2+-induced intracellular Ca2+ release in rat ventricular myocytes.


1997 ◽  
Vol 272 (1) ◽  
pp. H350-H359 ◽  
Author(s):  
D. S. Damron ◽  
B. A. Summers

Modulation of intracellular free Ca2+ concentration ([Ca2+]i) by inotropic stimuli alters contractility in cardiac muscle. Arachidonic acid (AA), a precursor for eicosanoid formation, is released in response to receptor activation and myocardial ischemia and has been demonstrated to alter K+ and Ca2+ channel activity. We investigated the effects of AA on contractility by simultaneously measuring [Ca2+]i and shortening in single field-stimulated rat ventricular myocytes. [Ca2+]i transients were measured using fura 2, and myocyte shortening was assessed using video edge detection. AA stimulated a doubling in the amplitude of the [Ca2+]i transient and a twofold increase in myocyte shortening. In addition, AA stimulated a 30% increase in the time to 50% diastolic [Ca2+]i and a 35% increase in the time to 50% relengthening. These effects of AA were mediated by AA itself (56 +/- 5%) and by cyclooxygenase metabolites. Pretreatment with the protein kinase C inhibitors staurosporine and chelerythrine nearly abolished (> 90% inhibition) these AA-induced effects. Inhibition of voltagegated K+ channels with 4-aminopyridine mimicked the effects of AA. Addition of AA to the 4-aminopyridine-treated myocyte had no additional effect on parameters of contractile function. These data indicate that AA alters the amplitude and duration of Ca2- transients and myocyte shortening via protein kinase C-dependent inhibition of voltage-gated K+ channels. Release of AA by phospholipases in response to receptor activation by endogenous mediators or pathological stimuli may be involved in mediating inotropic responses in cardiac muscle.


1996 ◽  
Vol 270 (3) ◽  
pp. H907-H914 ◽  
Author(s):  
H. Terada ◽  
H. Hayashi ◽  
N. Noda ◽  
H. Satoh ◽  
H. Katoh ◽  
...  

It has been shown that the occurrence of the transient inward current, which is responsible for triggered activity, was often associated with propagating regions of increased intracellular Ca2+ concentration ([Ca2+]i), i.e., the “Ca2+ wave.” To investigate the mechanism of antiarrhythmic action of Mg2+, we have studied effects of high concentrations of Mg2+ on Ca2+ waves in isolated rat ventricular myocytes. [Ca2+]i was estimated using the Ca(2+)-indicating probe indo 1. Ca2+ waves in myocytes, stimulated at 0.2 Hz, were induced by perfusion of isoproterenol (10(-7) M). High Mg2+ concentration suppressed Ca2+ waves in a concentration-dependent manner (36% at 4 mM, 70% at 8 mM, and 82% at 12 mM). The Ca2+ channel blocker verapamil also suppressed Ca2+ waves in a similar way. In contrast with marked depression of Ca2+ transients by verapamil, Ca2+ transients were not affected by high Mg2+ concentration (8 mM). High Mg2+ concentration also reduced frequencies of Ca2+ waves in the absence of electrical stimulation, whereas verapamil failed to reduce frequencies of Ca2+ waves. Reduction in frequency of Ca2+ waves by high Mg2+ concentration was associated with slowing of propagation velocity of Ca2+ waves. To examine whether suppressive effects of high Mg2+ concentration on Ca2+ waves were related to an increase in intracellular Mg2+ concentration ([Mg2+]i), the effect of high-Mg2+ solution on [Mg2+]i was examined in myocytes loaded with mag-fura 2. An increase in extracellular Mg2+ concentration from 1 to 12 mM increased [Mg2+]i from 1.06 +/- 0.16 to 1.87 +/- 0.22 mM (P < 0.01) in 30 min. To examine the effect of high Mg2+ concentration on amount of releasable Ca2+ in the sarcoplasmic reticulum, the effect of high Mg2+ concentration on the Ca2+ transient induced by a rapid application of caffeine was examined. High-Mg2+ solution increased the peak of the caffeine-induced Ca2+ transient. These results suggest that the inhibitory effect of Mg2+ on Ca2+ waves was not due to inhibition of the sarcolemmal Ca2+ channel but could be due to a decreased propensity for the sarcoplasmic reticulum to divest itself of excess Ca2+.


2014 ◽  
Vol 307 (12) ◽  
pp. R1493-R1501 ◽  
Author(s):  
Caroline Cros ◽  
Laurent Sallé ◽  
Daniel E. Warren ◽  
Holly A. Shiels ◽  
Fabien Brette

Cardiomyocyte contraction depends on rapid changes in intracellular Ca2+. In mammals, Ca2+ influx as L-type Ca2+ current ( ICa) triggers the release of Ca2+ from sarcoplasmic reticulum (SR) and Ca2+-induced Ca2+ release (CICR) is critical for excitation-contraction coupling. In fish, the relative contribution of external and internal Ca2+ is unclear. Here, we characterized the role of ICa to trigger SR Ca2+ release in rainbow trout ventricular myocytes using ICa regulation by Ca2+ as an index of CICR. ICa was recorded with a slow (EGTA) or fast (BAPTA) Ca2+ chelator in control and isoproterenol conditions. In the absence of β-adrenergic stimulation, the rate of ICa inactivation was not significantly different in EGTA and BAPTA (27.1 ± 1.8 vs. 30.3 ± 2.4 ms), whereas with isoproterenol (1 μM), inactivation was significantly faster with EGTA (11.6 ± 1.7 vs. 27.3 ± 1.6 ms). When barium was the charge carrier, inactivation was significantly slower in both conditions (61.9 ± 6.1 vs. 68.0 ± 8.7 ms, control, isoproterenol). Quantification revealed that without isoproterenol, only 39% of ICa inactivation was due to Ca2+, while with isoproterenol, inactivation was Ca2+-dependent (∼65%) and highly reliant on SR Ca2+ (∼46%). Thus, SR Ca2+ is not released in basal conditions, and ICa is the main trigger of contraction, whereas during a stress response, SR Ca2+ is an important source of cytosolic Ca2+. This was not attributed to differences in SR Ca2+ load because caffeine-induced transients were not different in both conditions. Therefore, Ca2+ stored in SR of trout cardiomyocytes may act as a safety mechanism, allowing greater contraction when higher contractility is required, such as stress or exercise.


2006 ◽  
Vol 105 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Mark D. Graham ◽  
Philip M. Hopkins ◽  
Simon M. Harrison

Background Halothane has been reported to sensitize Ca(2+) release from the sarcoplasmic reticulum (SR), which is thought to contribute to its initial positive inotropic effect. However, little is known about whether isoflurane or sevoflurane affect the SR Ca(2+) release process, which may contribute to the inotropic profile of these anesthetics. Methods Mild Ca(2+) overload was induced in isolated rat ventricular myocytes by increase of extracellular Ca(2+) to 2 mM. The resultant Ca(2+) transients due to spontaneous Ca(2+) release from the SR were detected optically (fura-2). Cells were exposed to 0.6 mM anesthetic for a period of 4 min, and the frequency and amplitude of spontaneous Ca(2+) transients were measured. Results Halothane caused a temporary threefold increase in frequency and decreased the amplitude (to 54% of control) of spontaneous Ca(2+) transients. Removal of halothane inhibited spontaneous Ca release before it returned to control. In contrast, sevoflurane initially inhibited frequency of Ca(2+) release (to 10% of control), whereas its removal induced a burst of spontaneous Ca(2+) release. Isoflurane had no significant effect on either frequency or amplitude of spontaneous Ca(2+) release on application or removal. Sevoflurane was able to ameliorate the effects of halothane on the frequency and amplitude of spontaneous Ca(2+) release both on application and wash-off. Conclusions Application of halothane and removal of sevoflurane sensitize the SR Ca(2+) release process (and vice versa on removal). Sevoflurane reversed the effects of halothane, suggesting they may act at the same subcellular target on the SR.


Sign in / Sign up

Export Citation Format

Share Document