Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice

2004 ◽  
Vol 287 (5) ◽  
pp. H2070-H2077 ◽  
Author(s):  
Xiaoyin Wang ◽  
Chang Yin ◽  
Lei Xi ◽  
Rakesh C. Kukreja

Opening of Ca2+-activated K+ (KCa) channels has been shown to confer early cardioprotection. It is unknown whether the opening of these channels also induces delayed cardioprotection. In addition, we determined the involvement of nitric oxide synthases (NOSs), which have been implicated in cardioprotection induced by opening of mitochondrial ATP-sensitive K+ (KATP) channels. Adult male ICR mice were pretreated with the KCa-channel opener NS-1619 either 10 min or 24 h before 30 min of global ischemia and 60 min of reperfusion (I/R) in Langendorff mode. Infusion of NS-1619 (10 μM) for 10 min before I/R led to smaller infarct sizes as compared with the vehicle (DMSO)-treated group ( P < 0.05). This infarct-limiting effect of NS-1619 was associated with improvement in ventricular functional recovery after I/R. The NS-1619-induced protection was abolished by coadministration with the KCa-channel blocker paxilline (1 μM). Similarly, pretreatment with NS-1619 (1 mg/kg ip) induced delayed protection 24 h later ( P < 0.05). Interestingly, the NS-1619-induced late protection was not blocked by the NOS inhibitor Nω-nitro-l-arginine methyl ester (15 mg/kg ip). Unlike diazoxide (the opener of mitochondrial KATP channels), NS-1619 did not increase the expression of inducible or endothelial NOS. Western blot analysis demonstrated the existence of α- and β-subunits of KCa channels in mouse heart tissue. We conclude that opening of KCa channels leads to both early and delayed preconditioning effects through a mechanism that is independent of nitric oxide.

1994 ◽  
Vol 266 (2) ◽  
pp. R546-R552 ◽  
Author(s):  
C. Iadecola ◽  
F. Zhang

We studied the effect of nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, on the increases in cerebral blood flow (CBF) elicited by stepwise elevations in arterial partial pressure of CO2 (PaCO2) from normocapnia up to 204 mmHg. Rats were anesthetized with halothane and ventilated. CBF was monitored over the parietal cortex using a laser-Doppler flowmeter. Increasing levels of hypercapnia elicited graded elevations in CBF that reached a plateau at PaCO2 = 82 +/- 1 mmHg (CBF +215 +/- 25%; n = 8; P < 0.05, analysis of variance). L-NAME (40 mg/kg i.v.; n = 8), but not nitro-D-arginine methyl ester (n = 8), reduced resting CBF (-42 +/- 4%) and attenuated the increase in CBF elicited by hypercapnia. The attenuation occurred only at PaCO2 40-80 mmHg and was maximal (-75 +/- 8%; P < 0.05) at 54 +/- 2 mmHg. At PaCO2 > or = 100 mmHg, L-NAME (40-80 mg/kg) did not attenuate the response (P > 0.05). Reduction of resting CBF (-50 +/- 4%; n = 6) by administration of chloralose (20-40 mg/kg i.v.) did not attenuate the CBF response to hypercapnia (P > 0.05). We also found that the attenuation by L-NAME of resting CBF (n = 5) and of the cerebrovasodilation elicited by hypercapnia (n = 6) has a relatively slow time course, the effects reaching a maximum 45-60 min after intravenous administration of the drug. We conclude that L-NAME does not attenuate the CBF response to CO2 uniformly at all levels of hypercapnia.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (2) ◽  
pp. R661-R668 ◽  
Author(s):  
C. S. Ignacio ◽  
P. E. Curling ◽  
W. F. Childres ◽  
R. M. Bryan

Although perivascular nerves containing nitric oxide synthase (NOS) have been anatomically described for rat cerebral arteries, a dilator function for these nerves has eluded investigators when using isolated vessels. Rat middle cerebral arteries (MCAs) were isolated, pressurized, and electrically stimulated. The resting diameter of the MCAs after pressurization was 233 +/- 4 microns (n = 17) in one study. The MCAs showed a frequency-dependent dilation when stimulated. Maximum dilation (25-30% increase in diameter) occurred at a frequency of 8-16 Hz. Removal of endothelium or glibenclamide (10(-5) M), a blocker of ATP-sensitive potassium channels, had no effect on the dilations. The dilations were completely blocked with NG-nitro-L-arginine methyl ester (L-NAME) (10(-5) M), a general NOS inhibitor, and cold storage (24 h). The inhibition by L-NAME could be reversed by the addition of 10(-8) M L-arginine, the active precursor of NOS. Furthermore, 7-nitroindazole (10(-4) M), an inhibitor specific for the neuronal isoform of NOS, reduced the dilations by 43% (P < 0.05). Transections of nerve bundles originating from the sphenopalatine ganglia at the ethmoidal foramen blocked the dilations produced by electrical stimulations. We conclude that rat cerebral arteries have functionally intact perivascular nerves that dilate by releasing nitric oxide.


2003 ◽  
Vol 94 (3) ◽  
pp. 935-940 ◽  
Author(s):  
John B. Buckwalter ◽  
Valerie C. Curtis ◽  
Zoran Valic ◽  
Stephen B. Ruble ◽  
Philip S. Clifford

To test the hypothesis that nitric oxide (NO) production is essential for endogenous vascular remodeling in ischemic skeletal muscle, 22 New Zealand White rabbits were chronically instrumented with transit-time flow probes on the common iliac arteries and underwent femoral ligation to produce unilateral hindlimb ischemia. Iliac blood flow and arterial pressure were recorded at rest and during a graded exercise test. An osmotic pump connected to a femoral arterial catheter continuously delivered N-nitro-l-arginine methyl ester (a NO synthase inhibitor) or a control solution ( N-nitro-d-arginine methyl ester or phenylephrine) to the ischemic limb over a 2-wk period. At 1, 3, and 6 wk after femoral ligation, maximal treadmill exercise blood flow in the ischemic limb was reduced compared with baseline in each group. However, maximal exercise blood flow was significantly ( P < 0.05) lower in the l-NAME-treated group than in controls for the duration of the study: 48 ± 4 vs. 60 ± 5 ml/min at 6 wk. Consistent with the reduction in maximal blood flow response, the duration of voluntary exercise was also substantially ( P < 0.05) shorter in thel-NAME-treated group: 539 ± 67 vs. 889 ± 87 s. Resting blood flow was unaffected by femoral ligation in either group. The results of this study show that endogenous vascular remodeling, which partially alleviated the initial deficit in blood flow, was interrupted by NO synthase inhibition. Therefore, we conclude that NO is essential for endogenous collateral development and angiogenesis in ischemic skeletal muscle in the rabbit.


2003 ◽  
Vol 284 (1) ◽  
pp. H299-H308 ◽  
Author(s):  
Gilles Lebuffe ◽  
Paul T. Schumacker ◽  
Zuo-Hui Shao ◽  
Travis Anderson ◽  
Hirotoro Iwase ◽  
...  

Reactive oxygen species (ROS) and nitric oxide (NO) are implicated in induction of ischemic preconditioning. However, the relationship between these oxidant signals and opening of the mitochondrial ATP-dependent potassium (KATP) channel during early preconditioning is not fully understood. We observed preconditioning protection by hypoxia, exogenous H2O2, or PKC activator PMA in cardiomyocytes subjected to 1-h ischemia and 3-h reperfusion. Protection was abolished by KATP channel blocker 5-hydroxydecanoate (5-HD) in each case, indicating that these triggers must act upstream from the KATP channel. Inhibitors of NO synthase abolished protection in preconditioned cells, suggesting that NO is also required for protection. DAF-2 fluorescence (NO sensitive) increased during hypoxic triggering. This was amplified by pinacidil and inhibited by 5-HD, indicating that NO is generated subsequent to KATP channel activation. Exogenous NO during the triggering phase conferred protection blocked by 5-HD. Exogenous NO also restored protection abolished by 5-HD or N ω-nitro-l-arginine methyl ester in preconditioned cells. Antioxidants given during pinacidil or NO triggering abolished protection, confirming that ROS are generated by KATP channel activation. Coadministration of H2O2 and NO restored PMA-induced protection in 5-HD-treated cells, indicating that ROS and NO are required downstream from the KATP channel. We conclude that ROS can trigger preconditioning by causing activation of the KATP channel, which then induces generation of ROS and NO that are both required for preconditioning protection.


2005 ◽  
Vol 103 (1) ◽  
pp. 74-83 ◽  
Author(s):  
Pascal C. Chiari ◽  
Martin W. Bienengraeber ◽  
Dorothee Weihrauch ◽  
John G. Krolikowski ◽  
Judy R. Kersten ◽  
...  

Background Isoflurane produces delayed preconditioning in vivo. The authors tested the hypothesis that endothelial, inducible, or neuronal nitric oxide synthase (NOS) is a trigger or mediator of this protective effect. Methods In the absence or presence of exposure to isoflurane (1.0 minimum alveolar concentration) 24 h before experimentation, pentobarbital-anesthetized rabbits (n = 128) instrumented for hemodynamic measurement received 0.9% saline (control), the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (10 mg/kg), one of two of the selective inducible NOS antagonists aminoguanidine (300 mg/kg) or 1400W (0.5 mg/kg), or the selective neuronal NOS inhibitor 7-nitroindazole (50 mg/kg) administered before exposure to isoflurane (trigger; day 1) or left anterior descending coronary artery occlusion (mediator; day 2). All rabbits underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Tissue samples for reverse-transcription polymerase chain reaction and immunohistochemistry were also obtained in the presence or absence of N-nitro-l-arginine methyl ester with or without isoflurane pretreatment. Results Isoflurane significantly (P &lt; 0.05) reduced infarct size (23 +/- 5% [mean +/- SD] of the left ventricular area at risk; triphenyltetrazolium chloride staining) as compared with control (42 +/- 7%). N-nitro-l-arginine methyl ester administered before isoflurane or coronary occlusion abolished protection (49 +/- 7 and 43 +/- 10%, respectively). Aminoguanidine, 1400W, and 7-nitroindazole did not alter infarct size or affect isoflurane-induced delayed preconditioning. Isoflurane increased endothelial but not inducible NOS messenger RNA transcription and protein translation immediately and 24 h after administration of the volatile agent. Pretreatment with N-nitro-l-arginine methyl ester attenuated isoflurane-induced increases in endothelial NOS expression. Conclusions The results suggest that endothelial NOS but not inducible or neuronal NOS is a trigger and mediator of delayed preconditioning by isoflurane in vivo.


2012 ◽  
Vol 302 (1) ◽  
pp. R150-R158 ◽  
Author(s):  
Frank T. Spradley ◽  
Dao H. Ho ◽  
Kyu-Tae Kang ◽  
David M. Pollock ◽  
Jennifer S. Pollock

We hypothesized that vascular nitric oxide synthase (NOS) function and expression is differentially regulated in adult Dahl salt-sensitive rats maintained on Teklad or American Institutes of Nutrition (AIN)-76A standard chow diets from 3 to 16 wk old. At 16 wk old, acetylcholine (ACh)-mediated vasorelaxation and phenylephrine (PE)-mediated vasoconstriction in the presence and absence of NOS inhibitor, Nω-nitro-l-arginine methyl ester (l-NAME), was assessed in small-resistance mesenteric arteries and aortas. Rats maintained on either diet throughout the study had similar responses to ACh and PE in the presence or absence of l-NAME in both vascular preparations. We reasoned that changing from one diet to another as adults may induce vascular NOS dysfunction. In the absence of l-NAME, small arteries from Teklad-fed rats switched to AIN-76 diet and vice versa had similar responses to ACh and PE. Small-arterial NOS function was maintained in rats switched to AIN-76A from Teklad diet, whereas NOS function in response to ACh and PE was lost in the small arteries from rats changed to Teklad from AIN-76A diet. This loss of NOS function was echoed by reduced expression of NOS3, as well as phosphorylated NOS3. The change in NOS phenotype in the small arteries was observed without changes in blood pressure. Aortic responses to ACh or PE in the presence or absence of l-NAME were similar in all diet groups. These data indicate that changing standard chow diets leads to small arterial NOS dysfunction and reduced NOS signaling, predisposing Dahl salt-sensitive rats to vascular disease.


Reproduction ◽  
2007 ◽  
Vol 134 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Christina J McManus ◽  
Miroslav Valent ◽  
Steven L Hardy ◽  
Robert L Goodman

Seasonal anoestrus in the ewe results from enhanced oestrogen negative feedback. Recent data have implicated the ventromedial preoptic area (vmPOA) as an important site of oestrogen action. This study addressed whether NO acts within the vmPOA to inhibit LH during seasonal anoestrus. In Experiment 1, microimplants containingNω-nitro-l-arginine methyl ester (l-NAME, NOS inhibitor),S-methyl thiocitrulline (SMTC, neural NOS (nNOS) inhibitor) or empty implants (control) were administered during mid-anoestrus to the vmPOA.l-NAME, but not SMTC, significantly increased LH pulse frequency. For Experiment 2, ewes in late anoestrus were administered 7-nitroindazole (7NI; nNOS inhibitor),l-NAME, SMTC, or empty implants. 7NI, but notl-NAME or SMTC, increased LH pulse frequency. In Experiment 3, the effects of microimplants and microinjections ofl-NAME were compared in mid-anoestrus. Microinjections ofl-NAME (300 nl at 10 μg/μl) increased LH pulse frequency, but microimplants did not. In late anoestrus, similar microinjections were ineffective. Taken together, the results of Experiments 1–3 suggested that NO inhibition may be stronger during the middle than at the end of seasonal anoestrus. To test this hypothesis, ewes in Experiment 4 received microinjection ofl-NAME or vehicle thrice during the non-breeding season; none of the treatments increased LH pulse frequency. These results indicate that NO plays a role in the vmPOA in suppressing LH secretion during seasonal anoestrus because NOS inhibitors were consistently stimulatory when LH pulse frequency was low. However, the inconsistent and modest effects of these inhibitors suggest that NO actions in this area cannot completely account for the effects of inhibitory photoperiod.


2009 ◽  
pp. 591-598
Author(s):  
S Ankarali ◽  
HC Ankarali ◽  
C Marangoz

It has been shown that nitric oxide (NO) increases aggression in male mice, whereas it decreases aggression in lactating female mice and prairie voles. It is also known that aggression can be exhibited at different levels in rodent species, strain or subtypes. The aims of this study were to investigate the proportion of aggressiveness in Wistar rats, the effect of intraperitoneally administered nonspecific nitric oxide synthase (NOS) inhibitor L-NAME (NG-nitro L-arginine methyl ester) on maternal aggression towards female intruders, and whether these effects are due to NO production or not. Rats were given saline intraperitoneally on the postpartum Day 2 and aggression levels were recorded. The same rats were given 60 mg/kg L-NAME or D-NAME (NG -nitro D-arginine methyl ester) on the postpartum Day 3 and their effects on aggression levels were compared to saline. While L-NAME administration did not cause any differences in the total number of aggressive behavior, aggression duration and aggression intensity, it reduced the proportion of animals showing aggressive behavior. In addition, the latency of the first aggression was significantly increased by L-NAME. In the D-NAME group, however, no significant change was found. Our results have shown that L-NAME reduces maternal aggression towards female intruders in Wistar rats through inhibition of NO production. These results suggest that the role of NO in offensive and defensive maternal aggression shares neural mechanisms.


1997 ◽  
Vol 273 (6) ◽  
pp. L1167-L1173 ◽  
Author(s):  
Wilhelm S. Cruz ◽  
Michael A. Moxley ◽  
John A. Corbett ◽  
William J. Longmore

The purpose of this study was to determine if the acute alveolar injury induced by subcutaneous injections of N-nitroso- N-methylurethane (NNMU) in rats is mediated by nitric oxide (NO ⋅). We show that intraperitoneal injections of the NO ⋅ synthase (NOS) inhibitor N ω-nitro-l-arginine methyl ester (l-NAME) or aminoguanidine significantly attenuate the NNMU-induced alveolar injury as assessed by 1) normalization of the alveolar-arterial O2difference, 2) attenuation of the lowered phospholipid-to-protein ratio in the crude surfactant pellet (CSP), 3) attenuation of the elevated minimal surface tension of the CSP, and 4) attenuation of polymorphonuclear neutrophilic infiltration into the alveolar space. Injections of N ω-nitro-d-arginine methyl ester, the inactive stereoisoform ofl-NAME, did not affect the acute lung injury. Western blot analysis of whole lung homogenates demonstrate an elevated expression of transcriptionally inducible, Ca2+-independent NOS (iNOS) in NNMU-injected rats compared with control saline-injected rats. NOS inhibitors did not affect NNMU-induced iNOS expression. These investigations demonstrate that the inhibition of NOS attenuates NNMU-induced acute lung injury, suggesting a role for NO ⋅ in the progression of acute respiratory distress syndrome.


1992 ◽  
Vol 263 (6) ◽  
pp. L714-L722 ◽  
Author(s):  
J. B. Gupta ◽  
K. Prasad

We investigated the effects of H2O2 generated by glucose (G) and glucose oxidase (GO) on the isolated rabbit tracheal smooth muscle suspended in Krebs-Ringer solution. H2O2 generated by G+GO was measured with luminol-dependent chemiluminescence. G+GO in the concentrations of 1x (1.80 microM G, 0.075 U/ml GO) and 2, 4, and 8x generated 1.35, 3.2, 6.10, and 6.00 microM of H2O2, respectively. H2O2 produced relaxation of rabbit tracheal smooth muscle, relaxed acetylcholine (ACh)-precontracted muscle, and reduced muscle responsiveness to ACh. These effects were concentration dependent. H2O2, however, produced contraction of guinea pig tracheal smooth muscle. Catalase completely inhibited the H2O2-induced relaxation of ACh-precontracted tracheal smooth muscle. H2O2-induced relaxation was greater in preparations with intact epithelium (65%) than in those denuded of epithelium (40%). The relaxant effects of H2O2 in the presence of an inhibitor of nitric oxide synthesis (NG-monomethyl-L-arginine), an inhibitor of guanylate cyclase (methylene blue), an inhibitor of cyclooxygenase (indomethacin), and an ATP-sensitive K+ channel blocker (glipizide) were 44, 44, 39, and 48%, respectively. H2O2-induced relaxation in the presence of indomethacin in preparations with denuded epithelium was 29%. These results suggest that H2O2-induced relaxation of tracheal smooth muscle is partly epithelium dependent and is mediated by inhibitory arachidonic acid metabolites, epithelium-derived relaxing factor (nitric oxide), ATP-sensitive K+ channels, and the synthesis and release of prostaglandins from epithelium and the underlying smooth muscle.


Sign in / Sign up

Export Citation Format

Share Document