scholarly journals Activation of melanocortin receptors in the intermediolateral cell column of the upper thoracic cord elicits tachycardia in the rat

2013 ◽  
Vol 305 (6) ◽  
pp. H885-H893 ◽  
Author(s):  
Masamitsu Iwasa ◽  
Kazumi Kawabe ◽  
Hreday N. Sapru

Melanocortin receptors (MCRs) are present in the intermediolateral cell column of the spinal cord (IML). We tested the hypothesis that activation of MCRs in the IML elicits cardioacceleratory responses and the source of melanocortins in the IML may be the melanocortin-containing neurons in the hypothalamic arcuate nucleus (ARCN). Experiments were done in urethane-anesthetized, artificially ventilated adult male Wistar rats. Microinjections (50 nl) of α-melanocyte stimulating hormone (α-MSH) (0.4–2 mM) and adrenocorticotropic hormone (ACTH) (0.5–2 mM) into the right IML elicited increases in heart rate (HR). These tachycardic responses were blocked by microinjections of melanocortin receptor 4 (MC4R) antagonists [SHU9119 (0.25 mM) or agouti-related protein (AGRP, 0.1 mM)] into the right IML. Stimulation of right ARCN by microinjections (30 nl) of N-methyl-d-aspartic acid (NMDA, 10 mM) elicited increases in HR. Blockade of MC4Rs in the ipsilateral IML at T1–T3 using SHU9119 (0.25 mM) attenuated the tachycardic responses elicited by subsequent microinjections of NMDA into the ipsilateral ARCN. ARCN neurons retrogradely labeled by microinjections of Fluoro-Gold into the right IML showed immunoreactivity for proopiomelanocortin (POMC), α-MSH, and ACTH. Fibers immunoreactive for POMC, α-MSH, and ACTH were present in the IML at T1-T3. These results indicated that activation of MC4Rs in the right IML elicited tachycardia and one of the sources of melanocortins in the IML is the ARCN. Melanocortin levels are elevated in stress and ARCN neurons are activated during stress. Our results allude to the possibility that cardiac effects of stress may be mediated via melanocortin containing ARCN neurons that project to the IML.

2004 ◽  
Vol 33 (3) ◽  
pp. 693-703 ◽  
Author(s):  
N Hoggard ◽  
D V Rayner ◽  
S L Johnston ◽  
J R Speakman

The melanocortin system coordinates the maintenance of energy balance via the regulation of both food intake and energy expenditure. Leptin, a key adipogenic hormone involved in the regulation of energy balance is thought to act by stimulating production, in the hypothalamic arcuate nucleus, of α-melanocyte stimulating hormone (αMSH), a potent agonist of MC3/4 melanocortin receptors located in the paraventricular nucleus of the hypothalamus. Additionally leptin inhibits release of agouti-related protein (AgRP), an MC4R antagonist. During periods of caloric restriction, weight loss is not sustained because compensatory mechanisms, such as reduced resting metabolic rate (RMR) are brought into play. Understanding how these compensatory systems operate may provide valuable targets for pharmaceutical therapies to support traditional dieting approaches. As circulating leptin is reduced during caloric restriction, it may mediate some of the observed compensatory responses. In addition to decreases in circulating leptin levels, circulating AgRP is increased during fasting in rodents while αMSH is decreased. As central administration of AgRP depresses metabolism, we hypothesised that the peripheral rise in AgRP might be involved in signalling the depression of RMR during food restriction. We hypothesised that changes in plasma AgRP and αMSH may coordinate the regulation of changes in energy expenditure acting through central MC4 melanocortin receptors via the sympathetic nervous system. We show here that acute peripherally administered AgRP at supra-physiological concentrations in both lean (C57BL/6) and obese leptin-deficient (ob/ob) mice does not depress RMR, possibly because it crosses the blood–brain barrier very slowly compared with other metabolites. However, in vitro AgRP can decrease leptin secretion, by approximately 40%, from adipocytes into culture medium and may via this axis have an effect on energy metabolism during prolonged caloric restriction. In contrast, peripheral [Nle4,d-Phe7]-α MSH produced a large and sustained increase in resting energy expenditure (0.15 ml O2/min; P <0.05) with a similar response in leptin-deficient ob/ob mice (0.27 ml O2/min) indicating that this effect is independent of the status of leptin production in the periphery. In both cases respiratory exchange ratio and the levels of energy expended on spontaneous physical activity were unaffected by the administration of peripheral [Nle4,d-Phe7]-α MSH. In conclusion, αMSH analogues that cross the blood–brain barrier may significantly augment dietary restriction strategies by sustaining elevated RMR.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Vanni Caruso ◽  
Biao-Xin Chai ◽  
Adrian J. L. Clark ◽  
Roger D. Cone ◽  
Alex N. Eberle ◽  
...  

Melanocortin receptors (provisional nomenclature as recommended by NC-IUPHAR [41]) are activated by members of the melanocortin family (α-MSH, β-MSH and γ-MSH forms; δ form is not found in mammals) and adrenocorticotrophin (ACTH). Endogenous antagonists include agouti and agouti-related protein. ACTH(1-24) was approved by the US FDA as a diagnostic agent for adrenal function test, whilst NDP-MSH was approved by EMA for the treatment of erythropoietic protoporphyria. Several synthetic melanocortin receptor agonists are under clinical development.


2020 ◽  
Vol 21 (19) ◽  
pp. 7036
Author(s):  
Tianqiang Liu ◽  
Yue Deng ◽  
Zheng Zhang ◽  
Baolong Cao ◽  
Jing Li ◽  
...  

The melanocortin receptor 4 (MC4R) signaling system consists of MC4R, MC4R ligands [melanocyte-stimulating hormone (MSH), adrenocorticotropin (ACTH), agouti-related protein (AgRP)], and melanocortin-2 receptor accessory protein 2 (MRAP2), and it has been proposed to play important roles in feeding and growth in vertebrates. However, the expression and functionality of this system have not been fully characterized in teleosts. Here, we cloned tilapia MC4R, MRAP2b, AgRPs (AgRP, AgRP2), and POMCs (POMCa1, POMCb) genes and characterized the interaction of tilapia MC4R with MRAP2b, AgRP, α-MSH, and ACTH in vitro. The results indicate the following. (1) Tilapia MC4R, MRAP2b, AgRPs, and POMCs share high amino acid identity with their mammalian counterparts. (2) Tilapia MRAP2b could interact with MC4R expressed in CHO cells, as demonstrated by Co-IP assay, and thus decrease MC4R constitutive activity and enhance its sensitivity to ACTH1-40. (3) As in mammals, AgRP can function as an inverse agonist and antagonist of MC4R, either in the presence or absence of MRAP2b. These data, together with the co-expression of MC4R, MRAP2b, AgRPs, and POMCs in tilapia hypothalamus, suggest that as in mammals, ACTH/α-MSH, AgRP, and MRAP2 can interact with MC4R to control energy balance and thus play conserved roles in the feeding and growth of teleosts.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Vanni Caruso ◽  
Biao-Xin Chai ◽  
Adrian J. L. Clark ◽  
Roger D. Cone ◽  
Alex N. Eberle ◽  
...  

Melanocortin receptors (provisional nomenclature as recommended by NC-IUPHAR [36]) are activated by members of the melanocortin family (α-MSH, β-MSH and γ-MSH forms; δ form is not found in mammals) and adrenocorticotrophin (ACTH). Endogenous antagonists include agouti and agouti-related protein. ACTH(1-24) was approved by the US FDA as a diagnostic agent for adrenal function test, whilst NDP-MSH was approved by EMA for the treatment of erythropoietic protoporphyria. Several synthetic melanocortin receptor agonists are under clinical development.


2019 ◽  
Vol 12 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Dheyauldeen Shabeeb ◽  
Masoud Najafi ◽  
Ahmed Eleojo Musa ◽  
Mansoor Keshavarz ◽  
Alireza Shirazi ◽  
...  

Background:Radiotherapy is one of the treatment methods for cancers using ionizing radiations. About 70% of cancer patients undergo radiotherapy. Radiation effect on the skin is one of the main complications of radiotherapy and dose limiting factor. To ameliorate this complication, we used melatonin as a radioprotective agent due to its antioxidant and anti-inflammatory effects, free radical scavenging, improving overall survival after irradiation as well as minimizing the degree of DNA damage and frequency of chromosomal abrasions.Methods:Sixty male Wistar rats were randomly assigned to 4 groups: control (C), melatonin (M), radiation (R) and melatonin + radiation (MR). A single dose of 30 Gy gamma radiation was exposed to the right hind legs of the rats while 40 mg/ml of melatonin was administered 30 minutes before irradiation and 2 mg/ml once daily in the afternoon for one month till the date of rat’s sacrifice. Five rats from each group were sacrificed 4, 12 and 20 weeks after irradiation. Afterwards, their exposed skin tissues were examined histologically and biochemically.Results:In biochemical analysis, we found that malondialdehyde (MDA) levels significantly increased in R group and decreased significantly in M and MR groups after 4, 12, and 20 weeks, whereas catalase (CAT) and superoxide dismutase (SOD) activities decreased in the R group and increased in M and MR groups during the same time periods compared with the C group (p<0.05). Histopathological examination found there were statistically significant differences between R group compared with the C and M groups for the three different time periods (p<0.005, p<0.004 and p<0.004) respectively, while R group differed significantly with MR group (p<0.013). No significant differences were observed between C and M compared with MR group (p>0.05) at 4 and 20 weeks except for inflammation and hair follicle atrophy, while there were significant effects at 12 weeks (p<0.05).Conclusion:Melatonin can be successfully used for the prevention and treatment of radiation-induced skin injury. We recommend the use of melatonin in optimal and safe doses. These doses should be administered over a long period of time for effective radioprotection and amelioration of skin damages as well as improving the therapeutic ratio of radiotherapy.


2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Irina A. Shurygina ◽  
Мichael G. Shurygin ◽  
Lubov V. Rodionova ◽  
Nataliya I. Ayushinova

AbstractObjectivesTo study the expression of growth factors in the regulation of tissue repair after peritoneal damage tissue response to peritoneal damage.MethodsExperimental study in 35 male Wistar rats determining the evolution over time of the tissue response to aseptic peritoneal damage. A standardized bowel and peritoneal lesions were created in the right lower quadrant by laparotomy. Then, tissular expression of growth factors was evaluated by multiplex polymerase chain reaction at seven timepoints between 6 h and 30 days, postoperatively.ResultsTissular responses of granulocyte-stimulating factors (Csf2, Csf3), connective tissue growth factor (Ctgf), epidermal growth factors and receptor (Egf, Egfr), fibroblast growth factors (Fgf2, 7 and 10), heparin binding EGF-like growth factor (Hbegf), hepatocyte growth factor (Hgf), insulin-like growth factor-1 (Igf1), mitogenic transforming growth factors (Tgfa, Tgfb1, Tgfbr3), and vascular endothelial growth factor A (Vegfa) were biphasic with a first expression peak at day 3, followed by a more pronounced peak at day 14.ConclusionsWe observed a long-lasting, widespread response of tissular growth factors for at least two weeks after peritoneal damage. To be clinically effective, the prophylaxis of postoperative adhesions might be needed for an extended period of time.


2004 ◽  
Vol 180 (1) ◽  
pp. 183-191 ◽  
Author(s):  
LE Pritchard ◽  
D Armstrong ◽  
N Davies ◽  
RL Oliver ◽  
CA Schmitz ◽  
...  

Interactions between pro-opiomelanocortin (POMC)-derived peptides, agouti-related protein (AGRP) and the melanocortin-4 receptor (MC4-R) are central to energy homeostasis. In this study we have undertaken comprehensive pharmacological analysis of these interactions using a CHOK1 cell line stably transfected with human MC4-R. Our main objectives were (1) to compare the relative affinities and potencies of POMC-derived peptides endogenously secreted within the hypothalamus, (2) to investigate the potency of AGRP(83-132) antagonism with respect to each POMC-derived peptide and (3) to determine whether AGRP(83-132) and POMC-derived peptides act allosterically or orthosterically. We have found that beta melanocyte-stimulating hormone (betaMSH), desacetyl alpha MSH (da-alphaMSH) and adrenocorticotrophic hormone all have very similar affinities and potencies at the MC4-R compared with the presumed natural ligand, alphaMSH. Moreover, even MSH precursors, such as beta lipotrophic hormone, showed significant binding and functional activity. Therefore, many POMC-derived peptides could have important roles in appetite regulation and it seems unlikely that alphaMSH is the sole physiological ligand. We have shown that AGRP(83-132) acts as a competitive antagonist. There was no significant difference in the potency of inhibition by AGRP(83-132) or agouti(87-132) at the MC4-R, regardless of which POMC peptide was used as an agonist. Furthermore, we have found that AGRP(83-132) has no effect on the dissociation kinetics of radiolabelled Nle4,D-Phe7 MSH from the MC4-R, indicating an absence of allosteric effects. This provides strong pharmacological evidence that AGRP(83-132) acts orthosterically at the MC4-R to inhibit Gs-coupled accumulation of intracellular cAMP.


1999 ◽  
Vol 112 (5) ◽  
pp. 623-630
Author(s):  
D. Rusciano ◽  
P. Lorenzoni ◽  
M.M. Burger

B16 murine melanoma cells selected in vivo for enhanced liver metastatic ability (B16-LS9) show on the one hand an increased expression and constitutive activation of the proto-oncogene c-met (the receptor for hepatocyte growth factor/scatter factor), and on the other hand a more differentiated phenotype, when compared to the parental cell line, B16-F1. Following this observation, we have tried to establish whether there is a direct relationship between differentiation and c-met expression in B16 melanoma cells. Treatment of these cells with differentiating agents indicated that c-met expression was strongly induced by melanocyte stimulating hormone, while retinoic acid had almost no influence. c-met induction was triggered by engagement of the melanocortin receptor, cAMP elevation and PKA/PKC(α) activation, as respectively shown by the effects of ACTH, cAMP elevating agents and specific PK inhibitors. Regulation of c-met expression via the melanocortin receptor and cAMP raises the intriguing possibility that autocrine and/or paracrine mechanisms acting in vivo on this circuit might influence (through c-met expression and activation) the metastatic behavior of these tumor cells, which we have shown to be dependent on their c-met expression.


Sign in / Sign up

Export Citation Format

Share Document