scholarly journals Inducible nitric oxide synthase provides protection against injury-induced thrombosis in female mice

2011 ◽  
Vol 301 (2) ◽  
pp. H617-H624 ◽  
Author(s):  
Rita K. Upmacis ◽  
Hao Shen ◽  
Lea Esther S. Benguigui ◽  
Brian D. Lamon ◽  
Ruba S. Deeb ◽  
...  

Nitric oxide (NO) is an important vasoactive molecule produced by three NO synthase (NOS) enzymes: neuronal (nNOS), inducible (iNOS), and endothelial NOS (eNOS). While eNOS contributes to blood vessel dilation that protects against the development of hypertension, iNOS has been primarily implicated as a disease-promoting isoform during atherogenesis. Despite this, iNOS may play a physiological role via the modulation of cyclooxygenase and thromboregulatory eicosanoid production. Herein, we examined the role of iNOS in a murine model of thrombosis. Blood flow was measured in carotid arteries of male and female wild-type (WT) and iNOS-deficient mice following ferric chloride-induced thrombosis. Female WT mice were more resistant to thrombotic occlusion than male counterparts but became more susceptible upon iNOS deletion. In contrast, male mice (with and without iNOS deletion) were equally susceptible to thrombosis. Deletion of iNOS was not associated with a change in the balance of thromboxane A2 (TxA2) or antithrombotic prostacyclin (PGI2). Compared with male counterparts, female WT mice exhibited increased urinary nitrite and nitrate levels and enhanced ex vivo induction of iNOS in hearts and aortas. Our findings suggest that iNOS-derived NO in female WT mice may attenuate the effects of vascular injury. Thus, although iNOS is detrimental during atherogenesis, physiological iNOS levels may contribute to providing protection against thrombotic occlusion, a phenomenon that may be enhanced in female mice.

Parasitology ◽  
1999 ◽  
Vol 118 (2) ◽  
pp. 139-143 ◽  
Author(s):  
N. FAVRE ◽  
B. RYFFEL ◽  
W. RUDIN

Nitric oxide (NO) production has been suggested to play a role as effector molecule in the control of the malarial infections. However, the roles of this molecule are debated. To assess whether blood-stage parasite killing is NO dependent, we investigated the course of blood-stage Plasmodium chabaudi chabaudi (Pcc) infections in inducible nitric oxide synthase (iNOS)-deficient mice. Parasitaemia, haematological alterations, and survival were not affected by the lack of iNOS. To exclude a role of NO produced by other NOS, controls included NO suppression by oral administration of aminoguanidine (AG), a NOS inhibitor. As in iNOS-deficient mice, no difference in the parasitaemia course, survival and haematological values was observed after AG treatment. Our results indicate that NO production is not required for protection against malaria in our murine experimental model. However, C57BL/6 mice treated with AG lost their resistance to Pcc infections, suggesting that the requirement for NO production for parasite killing in murine blood-stage malaria might be strain dependent.


1999 ◽  
Vol 80 (11) ◽  
pp. 2997-3005 ◽  
Author(s):  
C. Bartholdy ◽  
A. Nansen ◽  
J. Erbo Christensen ◽  
O. Marker ◽  
A. Randrup Thomsen

By using mice with a targetted disruption in the gene encoding inducible nitric-oxide synthase (iNOS), we have studied the role of nitric oxide (NO) in lymphocytic choriomeningitis virus (LCMV)-induced, T cell-mediated protective immunity and immunopathology. The afferent phase of the T cell-mediated immune response was found to be unaltered in iNOS-deficient mice compared with wild-type C57BL/6 mice, and LCMV- induced general immunosuppression was equally pronounced in both strains. In vivo analysis revealed identical kinetics of virus clearance, as well as unaltered clinical severity of systemic LCMV infection in both strains. Concerning the outcome of intracerebral infection, no significant differences were found between iNOS-deficient and wild-type mice in the number or composition of mononuclear cells found in the cerebrospinal fluid on day 6 post-infection. Likewise, NO did not influence the up-regulation of proinflammatory cytokine/chemokine genes significantly, nor did it influence the development of fatal meningitis. However, a reduced virus-specific delayed-type hypersensitivity reaction was observed in iNOS-deficient mice compared with both IFN-γ-deficient and wild-type mice. This might suggest a role of NO in regulating vascular reactivity in the context of T cell-mediated inflammation. In conclusion, these findings indicate a minimal role for iNOS/NO in the host response to LCMV. Except for a reduced local oedema in the knockout mice, iNOS/NO seems to be redundant in controlling both the afferent and efferent phases of the T cell-mediated immune response to LCMV infection.


Parasitology ◽  
1999 ◽  
Vol 118 (2) ◽  
pp. 135-138 ◽  
Author(s):  
N. FAVRE ◽  
B. RYFFEL ◽  
W. RUDIN

Nitric oxide (NO) production has been suggested to be required for the development of cerebral malaria. However, the importance of this molecule for the appearance of this pathology is debated. To assess whether murine cerebral malaria is NO dependent, we investigated the course of blood-stage Plasmodium berghei ANKA (PbA) infections in inducible nitric oxide synthase (iNOS)-deficient mice. Parasitaemia, haematological alterations, survival and development of cerebral malaria were not affected by the lack of iNOS. To exclude a role of NO produced by other NOS, controls included NO suppression by oral administration of aminoguanidine (AG), a NOS inhibitor. As in iNOS-deficient mice, no difference in the parasitaemia course, survival and haematological values was observed after AG treatment. Our results indicate that NO production is not a crucial factor for the development of murine cerebral malaria.


2018 ◽  
Vol 16 (2) ◽  
pp. 194-199
Author(s):  
Wioletta Ratajczak-Wrona ◽  
Ewa Jablonska

Background: Polymorphonuclear neutrophils (PMNs) play a crucial role in the innate immune system’s response to microbial pathogens through the release of reactive nitrogen species, including Nitric Oxide (NO). </P><P> Methods: In neutrophils, NO is produced by the inducible Nitric Oxide Synthase (iNOS), which is regulated by various signaling pathways and transcription factors. N-nitrosodimethylamine (NDMA), a potential human carcinogen, affects immune cells. NDMA plays a major part in the growing incidence of cancers. Thanks to the increasing knowledge on the toxicological role of NDMA, the environmental factors that condition the exposure to this compound, especially its precursors- nitrates arouse wide concern. Results: In this article, we present a detailed summary of the molecular mechanisms of NDMA’s effect on the iNOS-dependent NO production in human neutrophils. Conclusion: This research contributes to a more complete understanding of the mechanisms that explain the changes that occur during nonspecific cellular responses to NDMA toxicity.


Circulation ◽  
1997 ◽  
Vol 96 (9) ◽  
pp. 3104-3111 ◽  
Author(s):  
Yoshihiro Fukumoto ◽  
Hiroaki Shimokawa ◽  
Toshiyuki Kozai ◽  
Toshiaki Kadokami ◽  
Kouichi Kuwata ◽  
...  

2004 ◽  
Vol 78 (1) ◽  
pp. 47-50 ◽  
Author(s):  
X.-C. Long ◽  
M. Bahgat ◽  
K. Chlichlia ◽  
A. Ruppel ◽  
Y.-L. Li

AbstractSchistosoma japonicumandS. mansoniwere tested for reactivity with an anti-inducible nitric oxide (iNOS) antibody and the distribution of iNOS was studied by immunofluorescent tests in different stages of the parasites. Reactivity was associated with the tegument in both larval schistosomes (sporocysts and cercariae) and eggs. With adult worms, the majority of the immunofluorescence was predominantly subtegumental inS. japonicumand parenchymal inS. mansoni. Fluorescence was also observed in host tissues (snails and mouse liver). In Western blots, the enzyme ofS. japonicumhad an apparent molecular weight of about 210 kDa. The possible role of worm and host iNOS in the parasite–host interrelation remains to be clarified.


2007 ◽  
Vol 103 (3) ◽  
pp. 1045-1055 ◽  
Author(s):  
Juliann G. Kiang ◽  
Phillip D. Bowman ◽  
Xinyue Lu ◽  
Yansong Li ◽  
Brian W. Wu ◽  
...  

Hemorrhage has been shown to increase inducible nitric oxide synthase (iNOS) and deplete ATP levels in tissues and geldanamycin limits both processes. Moreover, it is evident that inhibition of iNOS reduces caspase-3 and increases survival. Thus we sought to identify the molecular events responsible for the beneficial effect of geldanamycin. Hemorrhage in mice significantly increased caspase-3 activity and protein while treatment with geldanamycin significantly limited these increases. Similarly, geldanamycin inhibited increases in proteins forming the apoptosome (a complex of caspase-9, cytochrome c, and Apaf-1). Modulation of the expression of iNOS by iNOS gene transfection or siRNA treatment demonstrated that the level of iNOS correlates with caspase-3 activity. Our data indicate that geldanamycin limits caspase-3 expression and protects from organ injury by suppressing iNOS expression and apoptosome formation. Geldanamycin, therefore, may prove useful as an adjuvant in fluids used to treat patients suffering blood loss.


2003 ◽  
Vol 94 (6) ◽  
pp. 2534-2544 ◽  
Author(s):  
Wieslaw Kozak ◽  
Anna Kozak

Male C57BL/6J mice deficient in nitric oxide synthase (NOS) genes (knockout) and control (wild-type) mice were implanted intra-abdominally with battery-operated miniature biotelemeters (model VMFH MiniMitter, Sunriver, OR) to monitor changes in body temperature. Intravenous injection of lipopolysaccharide (LPS; 50 μg/kg) was used to trigger fever in response to systemic inflammation in mice. To induce a febrile response to localized inflammation, the mice were injected subcutaneously with pure turpentine oil (30 μl/animal) into the left hindlimb. Oral administration (gavage) of N G-monomethyl-l-arginine (l-NMMA) for 3 days (80 mg · kg−1 · day−1in corn oil) before injection of pyrogens was used to inhibit all three NOSs ( N G-monomethyl-d-arginine acetate salt and corn oil were used as control). In normal male C57BL/6J mice, l-NMMA inhibited the LPS-induced fever by ∼60%, whereas it augmented fever by ∼65% in mice injected with turpentine. Challenging the respective NOS knockout mice with LPS and with l-NMMA revealed that inducible NOS and neuronal NOS isoforms are responsible for the induction of fever to LPS, whereas endothelial NOS (eNOS) is not involved. In contrast, none of the NOS isoforms appeared to trigger fever to turpentine. Inhibition of eNOS, however, exacerbates fever in mice treated with l-NMMA and turpentine, indicating that eNOS participates in the antipyretic mechanism. These data support the hypothesis that nitric oxide is a regulator of fever. Its action differs, however, depending on the pyrogen used and the NOS isoform.


Sign in / Sign up

Export Citation Format

Share Document