scholarly journals Depolarization of mitochondria in neurons promotes activation of nitric oxide synthase and generation of nitric oxide

2016 ◽  
Vol 310 (9) ◽  
pp. H1097-H1106 ◽  
Author(s):  
Prasad V. G. Katakam ◽  
Somhrita Dutta ◽  
Venkata N. Sure ◽  
Samuel M. Grovenburg ◽  
Angellica O. Gordon ◽  
...  

The diverse signaling events following mitochondrial depolarization in neurons are not clear. We examined for the first time the effects of mitochondrial depolarization on mitochondrial function, intracellular calcium, neuronal nitric oxide synthase (nNOS) activation, and nitric oxide (NO) production in cultured neurons and perivascular nerves. Cultured rat primary cortical neurons were studied on 7–10 days in vitro, and endothelium-denuded cerebral arteries of adult Sprague-Dawley rats were studied ex vivo. Diazoxide and BMS-191095 (BMS), activators of mitochondrial KATP channels, depolarized mitochondria in cultured neurons and increased cytosolic calcium levels. However, the mitochondrial oxygen consumption rate was unaffected by mitochondrial depolarization. In addition, diazoxide and BMS not only increased the nNOS phosphorylation at positive regulatory serine 1417 but also decreased nNOS phosphorylation at negative regulatory serine 847. Furthermore, diazoxide and BMS increased NO production in cultured neurons measured with both fluorescence microscopy and electron spin resonance spectroscopy, which was sensitive to inhibition by the selective nNOS inhibitor 7-nitroindazole (7-NI). Diazoxide also protected cultured neurons against oxygen-glucose deprivation, which was blocked by NOS inhibition and rescued by NO donors. Finally, BMS induced vasodilation of endothelium denuded, freshly isolated cerebral arteries that was diminished by 7-NI and tetrodotoxin. Thus pharmacological depolarization of mitochondria promotes activation of nNOS leading to generation of NO in cultured neurons and endothelium-denuded arteries. Mitochondrial-induced NO production leads to increased cellular resistance to lethal stress by cultured neurons and to vasodilation of denuded cerebral arteries.

2008 ◽  
Vol 294 (3) ◽  
pp. L582-L591 ◽  
Author(s):  
Neetu Sud ◽  
Stephen Wedgwood ◽  
Stephen M. Black

In this study, we explore the roles of the delta isoform of PKC (PKCδ) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCδ with either rottlerin or with the peptide, δV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCδ inhibition using either rottlerin or the overexpression of a dominant negative PKCδ mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCδ inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCδ is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCδ-mediated Akt activation and NO generation in maintaining eNOS expression.


1997 ◽  
Vol 322 (2) ◽  
pp. 477-481 ◽  
Author(s):  
John S. HOTHERSALL ◽  
Fernando Q. CUNHA ◽  
Guy H. NEILD ◽  
Alberto A. NOROHNA-DUTRA

Under pathological conditions, the induction of nitric oxide synthase (NOS) in macrophages is responsible for NO production to a cytotoxic concentration. We have investigated changes to, and the role of, intracellular glutathione in NO production by the activated murine macrophage cell line J774. Total glutathione concentrations (reduced, GSH, plus the disulphide, GSSG) were decreased to 45% of the control 48 h after cells were activated with bacterial lipopolysaccharide plus interferon γ. This was accompanied by a decrease in the GSH/GSSG ratio from 12:1 to 2:1. The intracellular decrease was not accounted for by either GSH or GSSG efflux; on the contrary, rapid export of glutathione in control cells was abrogated during activation. The loss of intra- and extracellular glutathione indicates either a decrease in synthesis de novo, or an increase in utilization, rather than competition for available NADPH. All changes in activated cells were prevented by pretreatment with the NOS inhibitor l-N-(1-iminoethyl)ornithine. Basal glutathione levels in J774 cells were manipulated by pretreatment with (1) buthionine sulphoximine (glutathione synthase inhibitor), (2) acivicin (γ-glutamyltranspeptidase inhibitor), (3) bromo-octane (glutathione S-transferase substrate) and (4) diamide/zinc (thiol oxidant and glutathione reductase inhibitor). All treatments significantly decreased the output of NO following activation. The degree of inhibition was dependent on (i) duration of treatment prior to activation, (ii) rate of depletion or subsequent recovery and (iii) thiol end product. The level of GSH did not significantly affect the production of NO, after induction of NOS. Thus, glutathione redox status appears to plays an important role in NOS induction during macrophage activation.


1997 ◽  
Vol 273 (2) ◽  
pp. H718-H724 ◽  
Author(s):  
H. Kinoshita ◽  
S. Milstien ◽  
C. Wambi ◽  
Z. S. Katusic

Tetrahydrobiopterin is an essential cofactor in biosynthesis of nitric oxide. The present study was designed to determine the effect of decreased intracellular tetrahydrobiopterin levels on endothelial function of isolated cerebral arteries. Blood vessels were incubated for 6 h in minimum essential medium (MEM) in the presence or absence of a GTP cyclohydrolase I inhibitor, 2,4-diamino-6-hydroxypyrimidine (DAHP, 10(-2) M). Rings with and without endothelium were suspended for isometric force recording in the presence of a cyclooxygenase inhibitor, indomethacin (10(-5) M). In arteries with endothelium, DAHP significantly reduced intracellular levels of tetrahydrobiopterin. DAHP in combination with a precursor of the salvage pathway of tetrahydrobiopterin biosynthesis, sepiapterin (10(-4) M), not only restored but increased levels of tetrahydrobiopterin above control values. In DAHP-treated arteries, endothelium-dependent relaxations to bradykinin (10(-10)-10(-6) M) or calcium ionophore A23187 (10(-9)-10(-6) M) were significantly reduced, whereas endothelium-independent relaxations to a nitric oxide donor, 3-morpholinosydnonimine (10(-9)-10(-4) M), were not affected. When DAHP-treated arteries with endothelium were incubated with sepiapterin (10(-4) M) or superoxide dismutase (150 U/ml), relaxations to bradykinin and A23187 were restored to control levels. In contrast, superoxide dismutase did not affect endothelium-dependent relaxations in arteries incubated in MEM. A nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester (10(-4) M), abolished relaxations to bradykinin or A23187 in control arteries and in DAHP-treated arteries. These studies demonstrate that in cerebral arteries, decreased intracellular levels of tetrahydrobiopterin can reduce endothelium-dependent relaxations. Production of superoxide anions during activation of dysfunctional endothelial nitric oxide synthase appears to be responsible for the impairment of endothelial function.


2004 ◽  
Vol 287 (2) ◽  
pp. F231-F235 ◽  
Author(s):  
Marcela Herrera ◽  
Jeffrey L. Garvin

Endothelin-1 (ET-1) acutely inhibits NaCl reabsorption by the thick ascending limb (THAL) by activating the ETB receptor, stimulating endothelial nitric oxide synthase (eNOS), and releasing nitric oxide (NO). In nonrenal tissue, chronic exposure to ET-1 stimulates eNOS expression via the ETB receptor and activation of phosphatidylinositol 3-kinase (PI3K). We hypothesized that ET-1 increases eNOS expression in the THAL by binding to ETB receptors and stimulating PI3K. In primary cultures of medullary THALs treated for 24 h, eNOS expression increased by 36 ± 18% with 0.01 nM ET-1, 123 ± 30% with 0.1 nM ( P < 0.05; n = 5), and 71 ± 30% with 1 nM, whereas 10 nM had no effect. BQ-788, a selective ETB receptor antagonist, completely blocked stimulation of eNOS expression caused by 0.1 nM ET-1 (12 ± 25 vs. 120 ± 40% for ET-1 alone; P < 0.05; n = 5). BQ-123, a selective ETA receptor antagonist, did not affect the increase in eNOS caused by 0.1 nM ET-1. Sarafotoxin c (S6c; 0.1 μM), a selective ETB receptor agonist, increased eNOS expression by 77 ± 30% ( P < 0.05; n = 6). Wortmannin (0.01 μM), a PI3K inhibitor, completely blocked the stimulatory effect of 0.1 μM S6c (77 ± 30 vs. −28 ± 9%; P < 0.05; n = 6). To test whether the increase in eNOS expression heightens activity, we measured NO release in response to simultaneous treatment with l-arginine, ionomycin, and clonidine using a NO-sensitive electrode. NO release by control cells was 337 ± 61 and 690 ± 126 pA in ET-1-treated cells ( P < 0.05; n = 5). Taken together, these data suggest that ET-1 stimulates THAL eNOS, activating ETB receptors and PI3K and thereby increasing NO production.


2015 ◽  
Vol 118 (9) ◽  
pp. 1113-1121 ◽  
Author(s):  
Yet Hoi Hong ◽  
Tony Frugier ◽  
Xinmei Zhang ◽  
Robyn M. Murphy ◽  
Gordon S. Lynch ◽  
...  

Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ−/−and nNOSμ+/+mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor NG-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ−/−and nNOSμ+/+mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (∼4%) were detected in muscles from nNOSμ−/−mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.


1993 ◽  
Vol 606 (1) ◽  
pp. 148-155 ◽  
Author(s):  
Costantino Iadecola ◽  
Alvin J. Beitz ◽  
Waleed Renno ◽  
Xiaohong Xu ◽  
Bernd Mayer ◽  
...  

2007 ◽  
Vol 293 (1) ◽  
pp. L212-L221 ◽  
Author(s):  
Shilpa Vyas-Read ◽  
Philip W. Shaul ◽  
Ivan S. Yuhanna ◽  
Brigham C. Willis

Patients with interstitial lung diseases, such as idiopathic pulmonary fibrosis (IPF) and bronchopulmonary dysplasia (BPD), suffer from lung fibrosis secondary to myofibroblast-mediated excessive ECM deposition and destruction of lung architecture. Transforming growth factor (TGF)-β1 induces epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) to myofibroblasts both in vitro and in vivo. Inhaled nitric oxide (NO) attenuates ECM accumulation, enhances lung growth, and decreases alveolar myofibroblast number in experimental models. We therefore hypothesized that NO attenuates TGF-β1-induced EMT in cultured AEC. Studies of the capacity for endogenous NO production in AEC revealed that endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) are expressed and active in AEC. Total NOS activity was 1.3 pmol·mg protein−1·min−1 with 67% derived from eNOS. TGF-β1 (50 pM) suppressed eNOS expression by more than 60% and activity by 83% but did not affect iNOS expression or activity. Inhibition of endogenous NOS with l-NAME led to spontaneous EMT, manifested by increased α-smooth muscle actin (α-SMA) expression and a fibroblast-like morphology. Provision of exogenous NO to TGF-β1-treated AEC decreased stress fiber-associated α-SMA expression and decreased collagen I expression by 80%. NO-treated AEC also retained an epithelial morphology and expressed increased lamellar protein, E-cadherin, and pro-surfactant protein B compared with those treated with TGF-β alone. These findings indicate that NO serves a critical role in preserving an epithelial phenotype and in attenuating EMT in AEC. NO-mediated regulation of AEC fate may have important implications in the pathophysiology and treatment of diseases such as IPF and BPD.


2013 ◽  
Vol 304 (12) ◽  
pp. H1624-H1633 ◽  
Author(s):  
Matthew W. Miller ◽  
Leslie A. Knaub ◽  
Luis F. Olivera-Fragoso ◽  
Amy C. Keller ◽  
Vivek Balasubramaniam ◽  
...  

Cardiovascular disease risk factors, such as diabetes, hypertension, dyslipidemia, obesity, and physical inactivity, are all correlated with impaired endothelial nitric oxide synthase (eNOS) function and decreased nitric oxide (NO) production. NO-mediated regulation of mitochondrial biogenesis has been established in many tissues, yet the role of eNOS in vascular mitochondrial biogenesis and dynamics is unclear. We hypothesized that genetic eNOS deletion and 3-day nitric oxide synthase (NOS) inhibition in rodents would result in impaired mitochondrial biogenesis and defunct fission/fusion and autophagy profiles within the aorta. We observed a significant, eNOS expression-dependent decrease in mitochondrial electron transport chain (ETC) protein subunits from complexes I, II, III, and V in eNOS heterozygotes and eNOS null mice compared with age-matched controls. In response to NOS inhibition with NG-nitro-l-arginine methyl ester (l-NAME) treatment in Sprague Dawley rats, significant decreases were observed in ETC protein subunits from complexes I, III, and IV as well as voltage-dependent anion channel 1. Decreased protein content of upstream regulators of mitochondrial biogenesis, cAMP response element-binding protein and peroxisome proliferator-activated receptor-γ coactivator-1α, were observed in response to 3-day l-NAME treatment. Both genetic eNOS deletion and NOS inhibition resulted in decreased manganese superoxide dismutase protein. l-NAME treatment resulted in significant changes to mitochondrial dynamic protein profiles with decreased fusion, increased fission, and minimally perturbed autophagy. In addition, l-NAME treatment blocked mitochondrial adaptation to an exercise intervention in the aorta. These results suggest that eNOS/NO play a role in basal and adaptive mitochondrial biogenesis in the vasculature and regulation of mitochondrial turnover.


2006 ◽  
Vol 101 (1) ◽  
pp. 348-353 ◽  
Author(s):  
Rhonda D. Prisby ◽  
M. Keith Wilkerson ◽  
Elke M. Sokoya ◽  
Robert M. Bryan ◽  
Emily Wilson ◽  
...  

Cephalic elevations in arterial pressure associated with microgravity and prolonged bed rest alter cerebrovascular autoregulation in humans. Using the head-down tail-suspended (HDT) rat to chronically induce headward fluid shifts and elevate cerebral artery pressure, previous work has likewise shown cerebral perfusion to be diminished. The purpose of this study was to test the hypothesis that 2 wk of HDT reduces cerebral artery vasodilation. To test this hypothesis, dose-response relations for endothelium-dependent (2-methylthioadenosine triphosphate and bradykinin) and endothelium-independent (nitroprusside) vasodilation were determined in vitro in middle cerebral arteries (MCAs) from HDT and control rats. All in vitro measurements were done in the presence and absence of the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester (10−5 M) and cyclooxygenase inhibitor indomethacin (10−5 M). MCA caveolin-1 protein content was measured by immunoblot analysis. Endothelium-dependent vasodilation to 2-methylthioadenosine triphosphate and bradykinin were both lower in MCAs from HDT rats. These lower vasodilator responses were abolished with NG-nitro-l-arginine methyl ester but were unaffected by indomethacin. In addition, HDT was associated with lower levels of MCA caveolin-1 protein. Endothelium-independent vasodilation was not altered by HDT. These results indicate that chronic cephalic fluid shifts diminish endothelium-dependent vasodilation through alterations in the endothelial nitric oxide synthase signaling mechanism. Such decrements in endothelium-dependent vasodilation of cerebral arteries could contribute to the elevations in cerebral vascular resistance and reductions in cerebral perfusion that occur after conditions of simulated microgravity in HDT rats.


Sign in / Sign up

Export Citation Format

Share Document