scholarly journals The impact of scaled boundary conditions on wall shear stress computations in atherosclerotic human coronary bifurcations

2016 ◽  
Vol 310 (10) ◽  
pp. H1304-H1312 ◽  
Author(s):  
Jelle T. C. Schrauwen ◽  
Janina C. V. Schwarz ◽  
Jolanda J. Wentzel ◽  
Antonius F. W. van der Steen ◽  
Maria Siebes ◽  
...  

The aim of this study was to determine if reliable patient-specific wall shear stress (WSS) can be computed when diameter-based scaling laws are used to impose the boundary conditions for computational fluid dynamics. This study focused on mildly diseased human coronary bifurcations since they are predilection sites for atherosclerosis. Eight patients scheduled for percutaneous coronary intervention were imaged with angiography. The velocity proximal and distal of a bifurcation was acquired with intravascular Doppler measurements. These measurements were used for inflow and outflow boundary conditions for the first set of WSS computations. For the second set of computations, absolute inflow and outflow ratios were derived from geometry-based scaling laws based on angiography data. Normalized WSS maps per segment were obtained by dividing the absolute WSS by the mean WSS value. Absolute and normalized WSS maps from the measured-approach and the scaled-approach were compared. A reasonable agreement was found between the measured and scaled inflows, with a median difference of 0.08 ml/s [−0.01; 0.20]. The measured and the scaled outflow ratios showed a good agreement: 1.5 percentage points [−19.0; 4.5]. Absolute WSS maps were sensitive to the inflow and outflow variations, and relatively large differences between the two approaches were observed. For normalized WSS maps, the results for the two approaches were equivalent. This study showed that normalized WSS can be obtained from angiography data alone by applying diameter-based scaling laws to define the boundary conditions. Caution should be taken when absolute WSS is assessed from computations using scaled boundary conditions.

Author(s):  
Biyue Liu ◽  
Jie Zheng ◽  
Richard Bach ◽  
Dalin Tang

There are two major hemodynamic stresses imposed at the blood-arterial wall interface by flowing blood: the wall shear stress (WSS) acting tangentially to the wall, and the wall pressure (WP) acting vertically to the wall. These forces influence the artery wall metabolism and correspond to the local modifications of artery wall thickness, composition, microarchitecture, and compliance [2]. The role of flow wall shear stress in atherosclerosis progression has been under intensive investigation [4], while the impact of local blood pressure on plaque progression has been under-studied.


2021 ◽  
Author(s):  
Byeol Kim ◽  
Phong Nguyen ◽  
Yue-Hin Loke ◽  
Vincent Cleveland ◽  
Paige Mass ◽  
...  

BACKGROUND Patients with single ventricle heart defects receives three stages of surgeries culminating in the Fontan surgery. During the Fontan surgery, a vascular graft is sutured between the inferior vena cava and pulmonary artery to divert deoxygenated blood flow to the lungs via passive flow. Customizing the graft configuration can maximize the long-term benefits of Fontan surgery. However, planning patient-specific surgery has several challenges including the ability for physicians to customize grafts and evaluate its hemodynamic performance. OBJECTIVE The aim of this study was to develop a virtual reality (VR) Fontan graft modeling and evaluation software for physicians. User study was performed to achieve three additional goals: 1) evaluate the software when used by medical doctors and engineers, 2) identify if doctors have a baseline intuition about hemodynamic performance of Fontan grafts in a VR setting, and 3) explore the impact of viewing hemodynamic simulation results in numerical and graphical formats. METHODS A total of 5 medical professionals including 4 physicians (1 fourth-year resident, 1 third-year cardiac fellow, 1 pediatric intensivist, and 1 pediatric cardiac surgeon) and 1 biomedical engineer voluntarily participated in the study. The study was pre-scripted to minimize the variability of the interactions between the experimenter and the participants. Unless a participant was familiar with the Fontan surgery, a quick information session was provided at the start. Then, all participants were trained to use the VR gear and our software, CorFix. Each participant designed one bifurcated and one tube-shaped Fontan graft for a single patient. Then a hemodynamic performance evaluation was completed, allowing the participants to further modify their tube-shaped design. The design time and hemodynamic performance for each graft design were recorded. At the end of the study, all participants were provided surveys to evaluate the usability and learnability of the software and rate the intensity of VR sickness. RESULTS The average time for creating one bifurcated and one tube-shaped grafts after a single 10-minute training were 13.40 and 5.49 minutes, accordingly. Three out of 5 bifurcated and 1 out of 5 tube-shaped graft designs were in the benchmark range of hepatic flow distribution. Reviewing hemodynamic performance results and modifying the tube-shaped design took an average time of 2.92 minutes. Participants who modified their tube-shaped graft designs were able to improve the non-physiologic wall shear stress percentage by 7.02%. All tube-shaped graft designs improved wall shear stress compared the native surgical case of the patient. None of the designs met the benchmark indexed power loss. CONCLUSIONS VR graft design software can quickly be taught to physicians without any engineering background and VR experience. Improving the system of CorFix could improve performance of the users in customizing and optimizing grafts for patients. With graphical visualization, physicians were able to improve wall shear stress of a tube-shaped graft, lowering the chance of thrombosis. Bifurcated graft designs showed potential strength in better flow split to the lungs, reducing the risk for pulmonary arteriovenous malformations.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Min-Hyuk Park ◽  
Yue Qiu ◽  
Haoyao Cao ◽  
Ding Yuan ◽  
Da Li ◽  
...  

Abstract Central venous catheter (CVC) related thrombosis is a major cause of CVC dysfunction in patients under hemodialysis. The aim of our study was to investigate the impact of CVC insertion on hemodynamics in the central veins and to examine the changes in hemodynamic environments that may be related to thrombus formation due to the implantation of CVC. Patient-specific models of the central veins with and without CVC were reconstructed based on computed tomography images. Flow patterns in the veins were numerically simulated to obtain hemodynamic parameters such as time-averaged wall shear stress (TAWSS), oscillating shear index (OSI), relative residence time (RRT), and normalized transverse wall shear stress (transWSS) under pulsatile flow. The non-Newtonian effects of blood flow were also analyzed using the Casson model. The insertion of CVC caused significant changes in the hemodynamic environment in the central veins. A greater disturbance and increase of velocity were observed in the central veins after the insertion of CVC. As a result, TAWSS and transWSS were markedly increased, but most parts of OSI and RRT decreased. Newtonian assumption of blood flow would overestimate the increase in TAWSS after CVC insertion. High wall shear stress (WSS) and flow disturbance, especially the multidirectionality of the flow, induced by the CVC may be a key factor in initiating thrombosis after CVC insertion. Accordingly, approaches to decrease the flow disturbance during CVC insertion may help restrain the occurrence of thrombosis. More case studies with pre-operative and postoperative modeling and clinical follow-up need to be performed to verify these findings. Non-Newtonian blood flow assumption is recommended in computational fluid dynamics (CFD) simulations of veins with CVCs.


2014 ◽  
Vol 14 (02) ◽  
pp. 1450017 ◽  
Author(s):  
WAN NAIMAH WAN AB NAIM ◽  
POO BALAN GANESAN ◽  
ZHONGHUA SUN ◽  
KAHAR OSMAN ◽  
EINLY LIM

It is believed that the progression of Stanford type B aortic dissection is closely associated with vascular geometry and hemodynamic parameters. The hemodynamic differences owing to the presence of greater than two tears have not been explored. The focus of the present study is to investigate the impact of an additional re-entry tear on the flow, pressure and wall shear stress distribution in the dissected aorta. A 3D aorta model with one entry and one re-entry tear was generated from computed tomography (CT) angiographic images of a patient with Stanford Type B aortic dissection. To investigate the hemodynamic effect of more than two tear locations, an additional circular re-entry tear was added 24 mm above the original re-entry tear. Our simulation results showed that the presence of an additional re-entry tear provided an extra return path for blood back to the true lumen during systole, and an extra outflow path into the false lumen during diastole. The presence of this additional path led to a decrease in the false lumen pressure, particularly at the distal region. Meanwhile, the presence of this additional tear causes no significant difference on the time average wall shear stress (TAWSS) distribution except at regions adjacent to re-entry tear 2. Moderate and concentrated TAWSS was observed at the bottom region of this additional tear which may lead to further extension of the tear distally.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mikołaj Zimny ◽  
Edyta Kawlewska ◽  
Anna Hebda ◽  
Wojciech Wolański ◽  
Piotr Ładziński ◽  
...  

Abstract Background Previously published computational fluid dynamics (CFD) studies regarding intracranial aneurysm (IA) formation present conflicting results. Our study analysed the involvement of the combination of high wall shear stress (WSS) and a positive WSS gradient (WSSG) in IA formation. Methods We designed a case-control study with a selection of 38 patients with an unruptured middle cerebral artery (MCA) aneurysm and 39 non-aneurysmal controls to determine the involvement of WSS, oscillatory shear index (OSI), the WSSG and its absolute value (absWSSG) in aneurysm formation based on patient-specific CFD simulations using velocity profiles obtained from transcranial colour-coded sonography. Results Among the analysed parameters, only the WSSG had significantly higher values compared to the controls (11.05 vs − 14.76 [Pa/mm], P = 0.020). The WSS, absWSSG and OSI values were not significantly different between the analysed groups. Logistic regression analysis identified WSS and WSSG as significant co-predictors for MCA aneurysm formation, but only the WSSG turned out to be a significant independent prognosticator (OR: 1.009; 95% CI: 1.001–1.017; P = 0.025). Significantly more patients (23/38) in the case group had haemodynamic regions of high WSS combined with a positive WSSG near the bifurcation apex, while in the control group, high WSS was usually accompanied by a negative WSSG (14/39). From the analysis of the ROC curve for WSSG, the area under the curve (AUC) was 0.654, with the optimal cut-off value −0.37 Pa/mm. The largest AUC was recognised for combined WSS and WSSG (AUC = 0.671). Our data confirmed that aneurysms tend to form near the bifurcation apices in regions of high WSS values accompanied by positive WSSG. Conclusions The development of IAs is determined by an independent effect of haemodynamic factors. High WSS impacts MCA aneurysm formation, while a positive WSSG mainly promotes this process.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
E M J Hartman ◽  
A M Kok ◽  
A Hoogendoorn ◽  
F J H Gijsen ◽  
A F W Steen ◽  
...  

Abstract Introduction Local wall shear stress (WSS) metrics, high local lipid levels (as detected by near-infrared spectroscopy (NIRS)), as well as systemic lipid levels, have been individually associated with atherosclerotic disease progression. However, a possible synergistic effect remains to be elucidated. This study is the first study to combine WSS metrics with NIRS-detected local lipid content to investigate a potential synergistic effect on plaque progression in human coronary arteries. Methods The IMPACT study is a prospective, single centre study investigating the relation between atherosclerotic plaque progression and WSS in human coronary arteries. Patients with ACS treated with PCI were included. At baseline and after 1-year follow-up, patients underwent near-infrared spectroscopy intravascular ultrasound (NIRS-IVUS) imaging and intravascular doppler flow measurements of at least one non-culprit coronary artery. After one month, a CT angiography was made. CT derived centreline combined with IVUS lumen contours resulted in a 3D reconstruction of the vessel. The following WSS metrics were computed using computational fluid dynamics applying the vessel specific invasive flow measurements: time-average wall shear stress (TAWSS), relative residence time (RRT), cross-flow index, oscillatory shear index and transverse wall shear stress. Low TAWSS is known as pro atherogenic, in contrast to all the other shear stress metrics, at which a high magnitude is pro-atherogenic. The arteries were divided into 1.5mm/45° sectors. Based on NIRS-IVUS, wall thickness change over time was determined and NIRS positive sectors detected. Furthermore, per vessel the shear stress was divided into tertiles (low, intermediate, high). To investigate the synergistic effect of local lipids on shear stress related plaque growth, wall thickness change over time was related to the different shear stress metrics comparing the NIRS-positive with the NIRS-negative sectors. Results 15 non-culprit coronary arteries from the first 14 patients were analyzed (age 62±10 years old and 92.9% male). A total of 2219 sectors were studied (5.2%, N=130, NIRS-positive) for wall thickness changes. After studying all five shear stress metrics, we found for TAWSS and RRT that presence of lipids, as detected by NIRS, amplified the effect of shear stress on plaque progression (see figure). Sectors presenting with lipid-rich plaque, compared to NIRS-negative sectors, showed more progression when they were exposed to low TAWSS (p=0.07) or high RRT (p=0.012) and more regression in sectors exposed to high TAWSS (p=0.10) or low RRT (p=0.06). Delta wall thickness vs shear stress Conclusion We presented the first preliminary results of the IMPACT study, showing the synergistic effect of lipid rich plaque and shear stress on plaque progression. Therefore, intravascular lipid-rich plaque (NIRS) assessment has added value to shear stress profiling for the prediction of plaque growth, leading to improved risk stratification. Acknowledgement/Funding ERC starting grant 310457


2019 ◽  
Vol 11 (10) ◽  
pp. 999-1003 ◽  
Author(s):  
Michael R Levitt ◽  
Christian Mandrycky ◽  
Ashley Abel ◽  
Cory M Kelly ◽  
Samuel Levy ◽  
...  

ObjectivesTo study the correlation between wall shear stress and endothelial cell expression in a patient-specific, three-dimensional (3D)-printed model of a cerebral aneurysm.Materials and methodsA 3D-printed model of a cerebral aneurysm was created from a patient’s angiogram. After populating the model with human endothelial cells, it was exposed to media under flow for 24 hours. Endothelial cell morphology was characterized in five regions of the 3D-printed model using confocal microscopy. Endothelial cells were then harvested from distinct regions of the 3D-printed model for mRNA collection and gene analysis via quantitative polymerase chain reaction (qPCR.) Cell morphology and mRNA measurement were correlated with computational fluid dynamics simulations.ResultsThe model was successfully populated with endothelial cells, which survived under flow for 24 hours. Endothelial morphology showed alignment with flow in the proximal and distal parent vessel and aneurysm neck, but disorganization in the aneurysm dome. Genetic analysis of endothelial mRNA expression in the aneurysm dome and distal parent vessel was compared with the proximal parent vessels. ADAMTS-1 and NOS3 were downregulated in the aneurysm dome, while GJA4 was upregulated in the distal parent vessel. Disorganized morphology and decreased ADAMTS-1 and NOS3 expression correlated with areas of substantially lower wall shear stress and wall shear stress gradient in computational fluid dynamics simulations.ConclusionsCreating 3D-printed models of patient-specific cerebral aneurysms populated with human endothelial cells is feasible. Analysis of these cells after exposure to flow demonstrates differences in both cell morphology and genetic expression, which correlate with areas of differential hemodynamic stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Wang ◽  
Junwei Wang ◽  
Jing Peng ◽  
Mingming Huo ◽  
Zhiqiang Yang ◽  
...  

Patients with heart failure (HF) or undergoing cardiogenic shock and percutaneous coronary intervention require short-term cardiac support. Short-term cardiac support using a left ventricular assist device (LVAD) alters the pressure and flows of the vasculature by enhancing perfusion and improving the hemodynamic performance for the HF patients. However, due to the position of the inflow and outflow of the LVAD, the local hemodynamics within the aorta is altered with the LVAD support. Specifically, blood velocity, wall shear stress, and pressure difference are altered within the aorta. In this study, computational fluid dynamics (CFD) was used to elucidate the effects of a short-term LVAD for hemodynamic performance in a patient-specific aorta model. The three-dimensional (3D) geometric models of a patient-specific aorta and a short-term LVAD, Impella CP, were created. Velocity, wall shear stress, and pressure difference in the patient-specific aorta model with the Impella CP assistance were calculated and compared with the baseline values of the aorta without Impella CP support. Impella CP support augmented cardiac output, blood velocity, wall shear stress, and pressure difference in the aorta. The proposed CFD study could analyze the quantitative changes in the important hemodynamic parameters while considering the effects of Impella CP, and provide a scientific basis for further predicting and assessing the effects of these hemodynamic signals on the aorta.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Anthony J. Gannon ◽  
Garth V. Hobson ◽  
Michael J. Shea ◽  
Christopher S. Clay ◽  
Knox T. Millsaps

This study forms part of a program to develop a micro-electro-mechanical systems (MEMS) scale turbomachinery based vacuum pump and investigates the roughing portion of such a system. Such a machine would have many radial stages with the exhaust stages operating near atmospheric conditions while the inlet stages operate at near vacuum conditions. In low vacuum such as those to the inlet of a roughing pump, the flow can still be treated as a continuum; however, the no-slip boundary condition is not accurate. The Knudsen number becomes a dominant nondimensional parameter in these machines due to their small size and low pressures. As the Knudsen number increases, slip-flow becomes present at the walls. The study begins with a basic overview on implementing the slip wall boundary condition in a commercial code by specifying the wall shear stress based on the mean-free-path of the gas molecules. This is validated against an available micro-Poiseuille classical solution at Knudsen numbers between 0.001 and 0.1 with reasonable agreement found. The method of specifying the wall shear stress is then applied to a generic MEMS scale roughing pump stage that consists of two stators and a rotor operating at a nominal absolute pressure of 500 Pa. The zero flow case was simulated in all cases as the pump down time for these machines is small due to the small volume being evacuated. Initial transient two-dimensional (2D) simulations are used to evaluate three boundary conditions, classical no-slip, specified-shear, and slip-flow. It is found that the stage pressure rise increased as the flow began to slip at the walls. In addition, it was found that at lower pressures the pure slip boundary condition resulted in very similar predictions to the specified-shear simulations. As the specified-shear simulations are computationally expensive it is reasonable to use slip-flow boundary conditions. This approach was used to perform three-dimensional (3D) simulations of the stage. Again the stage pressure increased when slip-flow was present compared with the classical no-slip boundaries. A characteristic of MEMS scale turbomachinery are the large relative tip gaps requiring 3D simulations. A tip gap sensitivity study was performed and it was found that when no-slip boundaries were present the pressure ratio increased significantly with decreasing tip gap. When slip-flow boundaries were present, this relationship was far weaker.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0217271 ◽  
Author(s):  
A. M. Moerman ◽  
K. Dilba ◽  
S. Korteland ◽  
D. H. J. Poot ◽  
S. Klein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document