Preserved flow-mediated dilation in the inactive legs of spinal cord-injured individuals

2004 ◽  
Vol 287 (1) ◽  
pp. H374-H380 ◽  
Author(s):  
Patricia C. E. de Groot ◽  
Fleur Poelkens ◽  
Miriam Kooijman ◽  
Maria T. E. Hopman

The aim of the study was to assess endothelial function, measured by flow-mediated dilation (FMD), in an inactive extremity (leg) and chronically active extremity (arm) within one subject. Eleven male spinal cord-injured (SCI) individuals and eleven male controls (C) were included. Echo Doppler measurements were performed to measure FMD responses after 10 and 5 min of arterial occlusion of the leg (superficial femoral artery, SFA) and the arm (brachial artery, BA), respectively. A nitroglycerine spray was administered to determine the endothelium independent vasodilatation in the SFA. In the SFA, relative changes in FMD were significantly enhanced in SCI compared with C (SCI: 14.1 ± 1.3%; C: 9.2 ± 2.3%), whereas no differences were found in the BA (SCI: 12.5 ± 2.9%; C: 14.2 ± 3.3%). Because the FMD response is directly proportional to the magnitude of the stimulus, the FMD response was also expressed relative to the shear rate. No differences between the groups were found for the FMD-to-shear rate ratio in the SFA (SCI:0.061 ± 0.023%/s−1; C: 0.049 ± 0.024%/s−1), whereas the FMD-to-shear rate ratio was significantly decreased in the BA of SCI individuals (SCI: 0.037 ± 0.01%/s−1; C: 0.061 ± 0.027%/s−1). The relative dilatory response to nitroglycerine did not differ between the groups. (SCI: 15.6 ± 2.0%; C: 13.4 ± 2.3%). In conclusion, our results indicate that SCI individuals have a preserved endothelial function in the inactive legs and possibly an attenuated endothelial function in the active arms compared with controls.

2005 ◽  
Vol 98 (6) ◽  
pp. 2185-2190 ◽  
Author(s):  
M. Rakobowchuk ◽  
C. L. McGowan ◽  
P. C. de Groot ◽  
J. W. Hartman ◽  
S. M. Phillips ◽  
...  

Given the increasing emphasis on performance of resistance exercise as an essential component of health, we evaluated, using a prospective longitudinal design, the potential for resistance training to affect arterial endothelial function. Twenty-eight men (23 ± 3.9 yr old; mean ± SE) engaged in 12 wk of whole body resistance training five times per week using a repeating split-body 3-day cycle. Brachial endothelial function was measured using occlusion cuff-induced flow-mediated dilation. After occlusion of the forearm for 4.5 min, brachial artery dilation and postocclusion blood flow was measured continuously for 15 and 70 s, respectively. Peak and 10-s postocclusion blood flow, shear rate, and brachial artery flow-mediated dilation (relative and normalized to shear rate) were measured pretraining (Pre), at 6 wk of training (Mid), and at 13 wk of training (Post). Results indicated an increase of mean brachial artery diameter by Mid and Post vs. Pre. Peak and 10-s postocclusion blood flow increased by Mid and remained elevated at Post; however, shear rates were not different at any time point. Relative and normalized flow-mediated dilation was also not different at any time point. This study is the first to show that peripheral arterial remodeling does occur with resistance training in healthy young men. In addition, the increase in postocclusion blood flow may indicate improved resistance vessel function. However, unlike studies involving endurance training, flow-mediated dilation did not increase with resistance training. Thus arterial adaptations with high-pressure loads, such as those experienced during resistance exercise, may be quite different compared with endurance training.


2015 ◽  
Vol 100 (10) ◽  
pp. 1107-1117 ◽  
Author(s):  
J. O. Totosy de Zepetnek ◽  
D. S. Ditor ◽  
J. S. Au ◽  
M. J. MacDonald

2019 ◽  
Vol 126 (5) ◽  
pp. 1335-1342 ◽  
Author(s):  
Joshua C. Tremblay ◽  
Arman S. Grewal ◽  
Kyra E. Pyke

Arterial endothelial function is acutely and chronically regulated by blood flow-associated shear stress. An acute intervention employing modest forearm cuff occlusion to simultaneously increase retrograde and decrease mean brachial artery shear rate for 30 min evokes transient impairments in flow-mediated dilation (FMD). However, the independent influence of the low mean versus the retrograde shear stress components is unclear. Healthy young adults [ n = 24 (12 women, 12 men); 22 ± 2 yr, body mass index = 25 ± 2 kg/m2 (mean ± SD)] completed three laboratory visits within 1 wk. Visits consisted of 45 min of supine rest followed by a brachial artery FMD test (duplex ultrasound) before and after a 30-min intervention: control (shear rate unchanged), cuff (mean shear rate decreased, retrograde shear rate increased), or arterial compression (mean shear rate decreased, no increase in retrograde shear rate). The mean shear rate on the compression visit was targeted to match that achieved on the cuff visit. Cuff and compression trials decreased mean shear rate to a similar extent (cuff: 43 ± 22 s−1, compression: 43 ± 21 s−1; P = 0.850) compared with control (65 ± 21 s−1; both P < 0.001), with the retrograde component elevated only in the former (cuff: −83 ± 30 s−1, compression: −7 ± 5 s−1; P < 0.001). FMD decreased by 29 ± 30% ( P < 0.001) after the cuff intervention and 32 ± 24% ( P < 0.001) after the compression trial but was unchanged on the control visit (−0.3 ± 18%; P = 0.754). This was not altered by accounting for the shear rate stimulus. An increased retrograde shear stress does not appear to be obligatory for the transient reduction in FMD achieved after a 30-min exposure to low mean shear stress. These findings provide novel mechanistic insight on the regulation of endothelial function in vivo. NEW & NOTEWORTHY Low mean and retrograde shear stress are considered atherogenic; however, their relative contribution to the acute regulation of endothelial function in humans is unclear. Matched reductions in mean shear stress (30 min), with and without increases in retrograde shear stress, elicited equivalent reductions in flow-mediated dilation in men and women. These findings afford novel insight regarding the shear stress components governing the acute (dys)regulation of conduit artery endothelial function in vivo.


2008 ◽  
Vol 104 (5) ◽  
pp. 1387-1393 ◽  
Author(s):  
D. H. J. Thijssen ◽  
M. Kooijman ◽  
P. C. E. de Groot ◽  
M. W. P. Bleeker ◽  
P. Smits ◽  
...  

Extreme inactivity of the legs in spinal cord-injured (SCI) individuals does not result in an impairment of the superficial femoral artery flow-mediated dilation (FMD). To gain insight into the underlying mechanism, the present study examined nitric oxide (NO) responsiveness of vascular smooth muscles in controls and SCI subjects. In eight healthy men (34 ± 13 yr) and six SCI subjects (37 ± 10 yr), superficial femoral artery FMD response was assessed by echo Doppler. Subsequently, infusion of incremental dosages of sodium nitroprusside (SNP) was used to assess NO responsiveness. Peak diameter was examined on a second day after 13 min of arterial occlusion in combination with sublingual administration of nitroglycerine. Resting and peak superficial femoral artery diameter in SCI subjects were smaller than in controls ( P < 0.001). The FMD response in controls (4.2 ± 0.9%) was lower than in SCI subjects (8.2 ± 0.9%, P < 0.001), but not after correcting for area under the curve for shear rate ( P = 0.35). When expressed as relative change from baseline, SCI subjects demonstrate a significantly larger diameter increase compared with controls at each dose of SNP. However, when expressed as a relative increase within the range of diameter changes [baseline (0%) − peak diameter (100%)], both groups demonstrate similar changes in response to SNP. Changes in diameter during SNP infusion and FMD response are larger in SCI subjects compared with controls. When these results are corrected, superficial femoral artery FMD and NO sensitivity in SCI subjects are not different from those in controls. This illustrates the importance of appropriate data presentation and suggests that, subsequent to structural inward remodeling of conduit arteries as a consequence of extreme physical inactivity, arterial function is normalized.


2019 ◽  
Vol 126 (6) ◽  
pp. 1687-1693 ◽  
Author(s):  
Sophie M. Holder ◽  
Ellen A. Dawson ◽  
Áine Brislane ◽  
Jonny Hisdal ◽  
Daniel J. Green ◽  
...  

Increase in mean shear stress represents an important and potent hemodynamic stimulus to improve conduit artery endothelial function in humans. No previous study has examined whether fluctuations in shear rate patterns, without altering mean shear stress, impacts conduit artery endothelial function. This study examined the hypothesis that 30-min exposure to fluctuations in shear rate patterns, in the presence of unaltered mean shear rate, improves brachial artery flow-mediated dilation. Fifteen healthy men (27.3 ± 5.0 yr) completed the study. Bilateral brachial artery flow-mediated dilation was assessed before and after unilateral exposure to 30 min of intermittent negative pressure (10 s, −40mmHg; 7 s, 0 mmHg) to induce fluctuation in shear rate, while the contralateral arm was exposed to a resting period. Negative pressure significantly increased shear rate, followed by a decrease in shear rate upon pressure release (both P < 0.001). Across the 30-min intervention, mean shear rate was not different compared with baseline ( P = 0.458). A linear mixed model revealed a significant effect of time observed for flow-mediated dilation ( P = 0.029), with exploratory post hoc analysis showing an increase in the intervention arm (∆FMD +2.0%, P = 0.008), but not in the contralateral control arm (∆FMD +0.5%, P = 0.664). However, there was no effect for arm ( P = 0.619) or interaction effect ( P = 0.096). In conclusion, we found that fluctuations in shear patterns, with unaltered mean shear, improves brachial artery flow-mediated dilation. These novel data suggest that fluctuations in shear pattern, even in the absence of altered mean shear, represent a stimulus to acute change in endothelial function in healthy individuals. NEW & NOTEWORTHY Intermittent negative pressure applied to the forearm induced significant fluctuations in antegrade and retrograde shear rate, while mean shear was preserved relative to baseline. Our exploratory study revealed that brachial artery flow-mediated dilation was significantly improved following 30-min exposure to intermittent negative pressure. Fluctuations in blood flow or shear rate, with unaltered mean shear, may have important implications for vascular health; however, further research is required to identify the underlying mechanisms and potential long-term health benefits.


2008 ◽  
Vol 105 (1) ◽  
pp. 282-292 ◽  
Author(s):  
K. E. Pyke ◽  
J. A. Hartnett ◽  
M. E. Tschakovsky

The purpose of this study was to determine the dynamic characteristics of brachial artery dilation in response to step increases in shear stress [flow-mediated dilation (FMD)]. Brachial artery diameter (BAD) and mean blood velocity (MBV) (Doppler ultrasound) were obtained in 15 healthy subjects. Step increases in MBV at two shear stimulus magnitudes were investigated: large (L; maximal MBV attainable), and small (S; MBV at 50% of the large step). Increase in shear rate (estimate of shear stress: MBV/BAD) was 76.8 ± 15.6 s−1 for L and 41.4 ± 8.7 s−1 for S. The peak %FMD was 14.5 ± 3.8% for L and 5.7 ± 2.1% for S ( P < 0.001). Both the L (all subjects) and the S step trials (12 of 15 subjects) elicited a biphasic diameter response with a fast initial phase (phase I) followed by a slower final phase. Relative contribution of phase I to total FMD when two phases occurred was not sensitive to shear rate magnitude ( r2 = 0.003, slope P = 0.775). Parameters quantifying the dynamics of the FMD response [time delay (TD), time constant (τ)] were also not sensitive to shear rate magnitude for both phases (phase I: TD r2 = 0.03, slope P = 0.376, τ r2 = 0.04, slope P = 0.261; final phase: TD r2 = 0.07, slope P = 0.169, τ r2 = 0.07, slope P = 0.996). These data support the existence of two distinct mechanisms, or sets of mechanisms, in the human conduit artery FMD response that are proportionally sensitive to shear stimulus magnitude and whose dynamic response is not sensitive to shear stimulus magnitude.


2008 ◽  
Vol 294 (4) ◽  
pp. H1833-H1839 ◽  
Author(s):  
S. C. Newcomer ◽  
C. L. Sauder ◽  
N. T. Kuipers ◽  
M. H. Laughlin ◽  
C. A. Ray

Shear rate is significantly lower in the superficial femoral compared with the brachial artery in the supine posture. The relative shear rates in these arteries of subjects in the upright posture (seated and/or standing) are unknown. The purpose of this investigation was to test the hypothesis that upright posture (seated and/or standing) would produce greater shear rates in the superficial femoral compared with the brachial artery. To test this hypothesis, Doppler ultrasound was used to measure mean blood velocity (MBV) and diameter in the brachial and superficial femoral arteries of 21 healthy subjects after being in the supine, seated, and standing postures for 10 min. MBV was significantly higher in the brachial compared with the superficial femoral artery during upright postures. Superficial femoral artery diameter was significantly larger than brachial artery diameter. However, posture had no significant effect on either brachial or superficial femoral artery diameter. The calculated shear rate was significantly greater in the brachial (73 ± 5, 91 ± 11, and 97 ± 13 s−1) compared with the superficial femoral (53 ± 4, 39 ± 77, and 44 ± 5 s−1) artery in the supine, seated, and standing postures, respectively. Contrary to our hypothesis, our current findings indicate that mean shear rate is lower in the superficial femoral compared with the brachial artery in the supine, seated, and standing postures. These findings of lower shear rates in the superficial femoral artery may be one mechanism for the higher propensity for atherosclerosis in the arteries of the leg than of the arm.


Author(s):  
Nidhi Pandey ◽  
Poonam Goel ◽  
Anita Malhotra ◽  
Reeti Mehra ◽  
Navjot Kaur

Background: The objective of the study was to assess vascular function in normal pregnant women and women with gestational diabetes and to study its temporal relationship with gestational age at 24-28-week POG and at 36-38-week POG and changes in FMD in postpartum period.Methods: Assessment of vascular function was done at 24-28-week POG, 36-38-week POG and at 6-12-week postpartum by flow mediated dilation of brachial artery in 37 healthy pregnant women and 37 pregnant women with GDM.Results: In GDM group mean FMD at 24-28 weeks of POG, at 36-38 weeks POG was lower as compared to the control group (11.225±6.20,8.464±6.09 versus 14.49±5.21, 10.898±4.12) although the difference in mean FMD in two groups was not statistically significant. It was found that the decrease in FMD at 36-38-week POG as compared to 24-28 weeks POG was statistically significant in both the groups (p<0.001).Conclusions: This study revealed that when endothelial function as assessed by FMD was compared at different period of gestation, the mean decrease in FMD at 36-38-week POG as compared to 24-28-week POG and 6-week post-partum was statistically significant in patients with GDM and as well as the control group, however this trend of change was same in both the groups and was not statistically significant when compared between the two group (GDM versus control). A negative correlation of FMD was found with BMI, and HBA1c, that was stronger in GDM group.


2015 ◽  
Vol 241 (1) ◽  
pp. 199-204 ◽  
Author(s):  
Tim H.A. Schreuder ◽  
Daniel J. Green ◽  
Maria T.E. Hopman ◽  
Dick H.J. Thijssen

2012 ◽  
Vol 10 (1) ◽  
Author(s):  
Blair D Johnson ◽  
Kieren J Mather ◽  
Sean C Newcomer ◽  
Timothy D Mickleborough ◽  
Janet P Wallace

Sign in / Sign up

Export Citation Format

Share Document