scholarly journals Kir6.2 is not the mitochondrial KATP channel but is required for cardioprotection by ischemic preconditioning

2013 ◽  
Vol 304 (11) ◽  
pp. H1439-H1445 ◽  
Author(s):  
Andrew P. Wojtovich ◽  
William R. Urciuoli ◽  
Shampa Chatterjee ◽  
Aron B. Fisher ◽  
Keith Nehrke ◽  
...  

ATP-sensitive K+ (KATP) channels that contain K+ inward rectifier subunits of the 6.2 isotype (Kir6.2) are important regulators of the cardiac response to ischemia-reperfusion (I/R) injury. Opening of these channels is implicated in the cardioprotective mechanism of ischemic preconditioning (IPC), but debate surrounds the contribution of surface KATP (sKATP) versus mitochondrial KATP (mKATP) channels. While responses to I/R injury and IPC have been examined in Kir6.2−/− mice before, breeding methods and other technical obstacles may have confounded interpretations. The aim of this study was to elucidate the role of Kir6.2 in cardioprotection and mKATP activity, using conventionally bred Kir6.2−/− mice with wild-type littermates as controls. We found that perfused hearts from Kir6.2−/− mice exhibited a normal baseline response to I/R injury, were not protected by IPC, and showed a blunted response to the IPC mimetic drug diazoxide. These data suggest that the loss of IPC in Kir6.2−/− hearts is not due to an underlying difference in I/R sensitivity. Furthermore, mKATP channel activity was identical in cardiac mitochondria isolated from wild-type versus Kir6.2−/− mice, suggesting no role for Kir6.2 in the mKATP. Collectively, these data indicate that Kir6.2 is required for the full response to IPC or diazoxide but is not involved in mKATP formation.

2000 ◽  
Vol 278 (1) ◽  
pp. H305-H312 ◽  
Author(s):  
Ryan M. Fryer ◽  
Janis T. Eells ◽  
Anna K. Hsu ◽  
Michele M. Henry ◽  
Garrett J. Gross

We examined the role of the sarcolemmal and mitochondrial KATPchannels in a rat model of ischemic preconditioning (IPC). Infarct size was expressed as a percentage of the area at risk (IS/AAR). IPC significantly reduced infarct size (7 ± 1%) versus control (56 ± 1%). The sarcolemmal KATP channel-selective antagonist HMR-1098 administered before IPC did not significantly attenuate cardioprotection. However, pretreatment with the mitochondrial KATP channel-selective antagonist 5-hydroxydecanoic acid (5-HD) 5 min before IPC partially abolished cardioprotection (40 ± 1%). Diazoxide (10 mg/kg iv) also reduced IS/AAR (36.2 ± 4.8%), but this effect was abolished by 5-HD. As an index of mitochondrial bioenergetic function, the rate of ATP synthesis in the AAR was examined. Untreated animals synthesized ATP at 2.12 ± 0.30 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1. Rats subjected to ischemia-reperfusion synthesized ATP at 0.67 ± 0.06 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1. IPC significantly increased ATP synthesis to 1.86 ± 0.23 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1. However, when 5-HD was administered before IPC, the preservation of ATP synthesis was attenuated (1.18 ± 0.15 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1). These data are consistent with the notion that inhibition of mitochondrial KATPchannels attenuates IPC by reducing IPC-induced protection of mitochondrial function.


2011 ◽  
Vol 300 (2) ◽  
pp. H522-H526 ◽  
Author(s):  
Michael D. Goodman ◽  
Sheryl E. Koch ◽  
Muhammad R. Afzal ◽  
Karyn L. Butler

The role of other STAT subtypes in conferring ischemic tolerance is unclear. We hypothesized that in STAT-3 deletion alternative STAT subtypes would protect myocardial function against ischemia-reperfusion injury. Wild-type (WT) male C57BL/6 mice or mice with cardiomyocyte STAT-3 knockout (KO) underwent baseline echocardiography. Langendorff-perfused hearts underwent ischemic preconditioning (IPC) or no IPC before ischemia-reperfusion. Following ex vivo perfusion, hearts were analyzed for STAT-5 and -6 phosphorylation by Western blot analysis of nuclear fractions. Echocardiography and postequilibration cardiac performance revealed no differences in cardiac function between WT and KO hearts. Phosphorylated STAT-5 and -6 expression was similar in WT and KO hearts before perfusion. Contractile function in WT and KO hearts was significantly impaired following ischemia-reperfusion in the absence of IPC. In WT hearts, IPC significantly improved the recovery of the maximum first derivative of developed pressure (+dP/d tmax) compared with that in hearts without IPC. IPC more effectively improved end-reperfusion dP/d tmax in WT hearts compared with KO hearts. Preconditioned and nonpreconditioned KO hearts exhibited increased phosphorylated STAT-5 and -6 expression compared with WT hearts. The increased subtype activation did not improve the efficacy of IPC in KO hearts. In conclusion, baseline cardiac performance is preserved in hearts with cardiac-restricted STAT-3 deletion. STAT-3 deletion attenuates preconditioning and is not associated with a compensatory upregulation of STAT-5 and -6 subtypes. The activation of STAT-5 and -6 in KO hearts following ischemic challenge does not provide functional compensation for the loss of STAT-3. JAK-STAT signaling via STAT-3 is essential for effective IPC.


2017 ◽  
Vol 32 (7) ◽  
pp. 559-567 ◽  
Author(s):  
Teresinha Regina Ribeiro de Oliveira ◽  
Geraldo Ferreira de Oliveira ◽  
Ricardo Santos Simões ◽  
Eduardo Hiroshi Tikazawa ◽  
Hugo Pequeno Monteiro ◽  
...  

2000 ◽  
Vol 279 (3) ◽  
pp. H1071-H1078 ◽  
Author(s):  
R. Ray Morrison ◽  
Rachael Jones ◽  
Anne M. Byford ◽  
Alyssa R. Stell ◽  
Jason Peart ◽  
...  

The role of A1adenosine receptors (A1AR) in ischemic preconditioning was investigated in isolated crystalloid-perfused wild-type and transgenic mouse hearts with increased A1AR. The effect of preconditioning on postischemic myocardial function, lactate dehydrogenase (LDH) release, and infarct size was examined. Functional recovery was greater in transgenic versus wild-type hearts (44.8 ± 3.4% baseline vs. 25.6 ± 1.7%). Preconditioning improved functional recovery in wild-type hearts from 25.6 ± 1.7% to 37.4 ± 2.2% but did not change recovery in transgenic hearts (44.8 ± 3.4% vs. 44.5 ± 3.9%). In isovolumically contracting hearts, pretreatment with selective A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine attenuated the improved functional recovery in both wild-type preconditioned (74.2 ± 7.3% baseline rate of pressure development over time untreated vs. 29.7 ± 7.3% treated) and transgenic hearts (84.1 ± 12.8% untreated vs. 42.1 ± 6.8% treated). Preconditioning wild-type hearts reduced LDH release (from 7,012 ± 1,451 to 1,691 ± 1,256 U · l−1 · g−1 · min−1) and infarct size (from 62.6 ± 5.1% to 32.3 ± 11.5%). Preconditioning did not affect LDH release or infarct size in hearts overexpressing A1AR. Compared with wild-type hearts, A1AR overexpression markedly reduced LDH release (from 7,012 ± 1,451 to 917 ± 1,123 U · l−1 · g−1 · min−1) and infarct size (from 62.6 ± 5.1% to 6.5 ± 2.1%). These data demonstrate that murine preconditioning involves endogenous activation of A1AR. The beneficial effects of preconditioning and A1AR overexpression are not additive. Taken with the observation that A1AR blockade equally eliminates the functional protection resulting from both preconditioning and transgenic A1AR overexpression, we conclude that the two interventions affect cardioprotection via common mechanisms or pathways.


2007 ◽  
Vol 293 (3) ◽  
pp. F741-F747 ◽  
Author(s):  
Kathrin Hochegger ◽  
Tobias Schätz ◽  
Philipp Eller ◽  
Andrea Tagwerker ◽  
Dorothea Heininger ◽  
...  

T cells have been implicated in the pathogenesis of renal ischemia-reperfusion injury (IRI). To date existing data about the role of the T cell receptor (Tcr) are contradictory. We hypothesize that the Tcr plays a prominent role in the late phase of renal IRI. Therefore, renal IRI was induced in α/β, γ/δ T cell-deficient and wild-type mice by clamping renal pedicles for 30 min and reperfusing for 24, 48, 72, and 120 h. Serum creatinine increased equally in all three groups 24 h after ischemia but significantly improved in Tcr-deficient animals compared with wild-type controls after 72 h. A significant reduction in renal tubular injury and infiltration of CD4+ T-cells in both Tcr-deficient mice compared with wild-type controls was detected. Infiltration of α/β T cells into the kidney was reduced in γ/δ T cell-deficient mice until 72 h after ischemia. In contrast, γ/δ T cell infiltration was equal in wild-type and α/β T cell-deficient mice, suggesting an interaction between α/β and γ/δ T cells. Data from γ/δ T cell-deficient mice were confirmed by in vivo depletion of γ/δ T cells in C57BL/6 mice. Whereas α/β T cell-deficient mice were still protected after 120 h, γ/δ T cell-deficient mice showed a “delayed wild-type phenotype” with a dramatic increase in kidney-infiltrating α/β, Tcr-expressing CD4+ T-cells. This report provides further evidence that α/β T cells are major effector cells in renal IRI, whereas γ/δ T cells play a role as mediator cells in the first 72 h of renal IRI.


2002 ◽  
Vol 283 (4) ◽  
pp. H1562-H1568 ◽  
Author(s):  
Heather R. Cross ◽  
Elizabeth Murphy ◽  
Richard G. Black ◽  
John Auchampach ◽  
Charles Steenbergen

To determine whether A3 adenosine receptor (A3AR) signaling modulates myocardial function, energetics, and cardioprotection, hearts from wild-type and A3AR-overexpressor mice were subjected to 20-min ischemia and 40-min reperfusion while 31P NMR spectra were acquired. Basal heart rate and left ventricular developed pressure (LVDP) were lower in A3AR-overexpressor hearts than wild-type hearts. Ischemic ATP depletion was delayed and postischemic recoveries of contractile function, ATP, and phosphocreatine were greater in A3AR-hearts. To determine the role of depressed heart rate and to confirm A3AR-specific signaling, hearts were paced at 480 beats/min with or without 60 nmol/l MRS-1220 (A3AR-specific inhibitor) and then subjected to ischemia-reperfusion. LVDP was similar in paced A3AR-overexpressor and paced wild-type hearts. Differences in ischemic ATP depletion and postischemic contractile and energetic dysfunction remained in paced A3AR-overexpressor hearts versus paced wild-type hearts but were abolished by MRS-1220. In summary, A3AR overexpression decreased basal heart rate and contractility, preserved ischemic ATP, and decreased postischemic dysfunction. Pacing abolished the decreased contractility but not the ATP preservation or cardioprotection. Therefore, A3AR overexpression results in cardioprotection via a specific A3AR effect, possibly involving preservation of ATP during ischemia.


Sign in / Sign up

Export Citation Format

Share Document