Mechanism of cardioventilatory coupling: insights from cardiac pacing, vagotomy, and sinoaortic denervation in the anesthetized rat

2007 ◽  
Vol 292 (4) ◽  
pp. H1967-H1977 ◽  
Author(s):  
Y. C. Tzeng ◽  
P. D. Larsen ◽  
D. C. Galletly

Cardioventilatory coupling (CVC), a temporal alignment between the heartbeat and inspiratory activity, is a major determinant of breath-to-breath variation in observed respiratory rate ( fo). The cardiac-trigger hypothesis attributes this to adjustments of respiratory timing by baroreceptor afferent impulses to the central respiratory pattern generator. A mathematical model of this hypothesis indicates that apparent CVC in graphical plots of ECG R wave vs. inspiratory time is dependent on the heart rate (HR), the rate of the intrinsic respiratory oscillator ( fi), and the strength of the hypothetical cardiovascular afferent impulse. Failure to account for HR and fi may explain the inconsistent results from previous attempts to identify the neural pathways involved in CVC. Cognizant of these interactions, we factored in the HR-to- fi ratio in our examination of the role of the vagus nerve and arterial baroreceptors in CVC by cardiac pacing 29 anesthetized Sprague-Dawley rats and incrementally changing the HR. With the assumption of a relatively constant fi, CVC could be examined across a range of HR-to- fo ratios before and after vagotomy, sinoaortic denervation, and vagotomy + sinoaortic denervation. We confirmed the relation between CVC, HR-to- fo ratio, and breath-to-breath respiratory period variability and demonstrated the loss of these relations after baroreceptor elimination. Sham experiments ( n = 8) showed that these changes were not due to surgical stress. Our data support the notion that inspiratory timing can be influenced by cardiac afferent activity. We conclude that the putative cardiovascular input arises from the arterial baroreceptors and that the vagus nerve is not critical for CVC.

2003 ◽  
Vol 94 (1) ◽  
pp. 399-409 ◽  
Author(s):  
Ryan W. Bavis ◽  
Gordon S. Mitchell

Episodic hypoxia elicits a long-lasting augmentation of phrenic inspiratory activity known as long-term facilitation (LTF). We investigated the respective contributions of carotid chemoafferent neuron activation and hypoxia to the expression of LTF in urethane-anesthetized, vagotomized, paralyzed, and ventilated Sprague-Dawley rats. One hour after three 5-min isocapnic hypoxic episodes [arterial Po 2(PaO2 ) = 40 ± 5 Torr], integrated phrenic burst amplitude was greater than baseline in both carotid-denervated ( n = 8) and sham-operated ( n = 7) rats ( P < 0.05), indicating LTF. LTF was reduced in carotid-denervated rats relative to sham ( P < 0.05). In this and previous studies, rats were ventilated with hyperoxic gas mixtures (inspired oxygen fraction = 0.5) under baseline conditions. To determine whether episodic hyperoxia induces LTF, phrenic activity was recorded under normoxic (PaO2 = 90–100 Torr) conditions before and after three 5-min episodes of isocapnic hypoxia (PaO2 = 40 ± 5 Torr; n = 6) or hyperoxia (PaO2 > 470 Torr; n= 6). Phrenic burst amplitude was greater than baseline 1 h after episodic hypoxia ( P < 0.05), but episodic hyperoxia had no detectable effect. These data suggest that hypoxia per se initiates LTF independently from carotid chemoafferent neuron activation, perhaps through direct central nervous system effects.


2016 ◽  
Vol 120 (10) ◽  
pp. 1186-1195 ◽  
Author(s):  
Barbara J. Morgan ◽  
Russell Adrian ◽  
Zun-yi Wang ◽  
Melissa L. Bates ◽  
John M. Dopp

We determined the effects of chronic exposure to intermittent hypoxia (CIH) on chemoreflex control of ventilation in conscious animals. Adult male Sprague-Dawley rats were exposed to CIH [nadir oxygen saturation (SpO2), 75%; 15 events/h; 10 h/day] or normoxia (NORM) for 21 days. We assessed the following responses to acute, graded hypoxia before and after exposures: ventilation (V̇e, via barometric plethysmography), V̇o2 and V̇co2 (analysis of expired air), heart rate (HR), and SpO2 (pulse oximetry via neck collar). We quantified hypoxia-induced chemoreceptor sensitivity by calculating the stimulus-response relationship between SpO2 and the ventilatory equivalent for V̇co2 (linear regression). An additional aim was to determine whether CIH causes proliferation of carotid body glomus cells (using bromodeoxyuridine). CIH exposure increased the slope of the V̇e/V̇co2/SpO2 relationship and caused hyperventilation in normoxia. Bromodeoxyuridine staining was comparable in CIH and NORM. Thus our CIH paradigm augmented hypoxic chemosensitivity without causing glomus cell proliferation.


1974 ◽  
Vol 75 (3) ◽  
pp. 491-496 ◽  
Author(s):  
Junichi Mori ◽  
Hiroshi Nagasawa ◽  
Reiko Yanai ◽  
Junji Masaki

ABSTRACT The sequence of changes in the serum levels of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from 2 days before to 24 h after parturition of primiparous Sprague-Dawley rats was investigated by radioimmunoassay. No appreciable change in average serum FSH levels was observed during 2 days before and 1 h after parturition. After this the levels increased gradually to show a peak at 7 h after parturition and then declined gradually until 24 h after parturition. However, the level at 24 h after parturition was still twice as high as that at parturition (0 h). The average serum LH levels which were low between 2 days before and 1 h after parturition, showed a peak at 7 h and decreased toward 13 h after parturition. The same levels as at parturition were maintained between 13 and 24 h after parturition. The time of surge of either FSH or LH was closely related to the time after parturition. There were some differences between FSH and LH in the patterns of sequence of changes in the serum levels near parturition.


2018 ◽  
Vol 30 (5) ◽  
pp. 708-714 ◽  
Author(s):  
David C. Dorman ◽  
Melanie L. Foster ◽  
Brooke Olesnevich ◽  
Brad Bolon ◽  
Aude Castel ◽  
...  

Superabsorbent sodium polyacrylate polymeric hydrogels that retain large amounts of liquids are used in disposable diapers, sanitary napkins, and other applications. These polymers are generally considered “nontoxic” with acute oral median lethal doses (LD50) >5 g/kg. Despite this favorable toxicity profile, we identified a novel toxic syndrome in dogs and rats following the ingestion of a commercial dog pad composed primarily of a polyacrylic acid hydrogel. Inappropriate mentation, cerebellar ataxia, vomiting, and intention tremors were observed within 24 h after the ingestion of up to 15.7 g/kg of the hydrogel by an adult, castrated male Australian Shepherd mix. These observations prompted an experimental study in rats to further characterize the toxicity of the hydrogel. Adult, female Sprague Dawley rats ( n = 9) were assessed before and after hydrogel ingestion (2.6–19.2 g/kg over 4 h) using a functional observation battery and spontaneous motor activity. Clinical signs consistent with neurotoxicity emerged in rats as early as 2 h after the end of hydrogel exposure, including decreased activity in an open field, hunched posture, gait changes, reduced reaction to handling, decreased muscle tone, and abnormal surface righting. Hydrogel-exposed rats also had reduced motor activity when compared with pre-exposure baseline data. Rats that ingested the hydrogel did not develop nervous system lesions. These findings support the conclusion that some pet pad hydrogel products can induce acute neurotoxicity in animals under high-dose exposure conditions.


2021 ◽  
Author(s):  
Atta Mohammad Dost ◽  
Mehmet Gunata ◽  
Onural Ozhan ◽  
Azibe Yildiz ◽  
Nigar Vardi ◽  
...  

Abstract Amikacin (AK) is frequently used in the treatment of gram-negative and some gram-positive infections. However, its use is limited due to nephrotoxicity due to the increase in reactive oxygen radicals. The aim of this study was to investigate the role of carvacrol (CAR) against AK-induced nephrotoxicity in rats. Thirty-two Sprague Dawley rats were randomly divided into four groups as control (Vehicle), AK (400 mg/kg), CAR + AK (80 mg/kg CAR + 400 mg/kg AK), and AK + CAR (400 mg/kg AK + 80 mg/kg CAR) groups. AK and CAR were administered via intramuscular and per-oral for 7 days, respectively. Blood and kidney tissue samples were taken at the end of the experiment. Renal function and histopathological changes were compared, and the relevant parameters of oxidative stress and inflammation were detected. Histopathological findings (necrotic changes and dilatation and inflammatory cell infiltration) significantly increased in the AK group compared to the control group. Also, the rats in the AK group lost weight significantly. It was found that CAR treatment before and after AK significantly improved nephrotoxicity histopathologically (p < 0.05). However, this improvement was not detected biochemically. These results show that CAR treatment before and after AK improves nephrotoxicity in the histopathological level.


1993 ◽  
Vol 265 (5) ◽  
pp. H1523-H1528 ◽  
Author(s):  
D. G. McCormack ◽  
N. A. Paterson

In pulmonary inflammatory processes such as pneumonia there is diminished hypoxic pulmonary vasoconstriction (HPV). We investigated whether the attenuated HPV in pneumonia is a due to excess nitric oxide (NO) release. Sprague-Dawley rats were anesthetized, and a slurry (0.06 ml) of infected agar beads (containing 6 x 10(5) Pseudomonas aeruginosa organisms) or control (sterile) beads was then injected into a distal bronchus through a tracheotomy. After the establishment of a chronic P. aeruginosa pneumonia (7-10 days later) animals were instrumented for hemodynamic monitoring, and the response to exposure to hypoxic gas (fraction of inspired O2 = 0.08) was recorded before and after the administration of NG-monomethyl-L-arginine (L-NMMA; 50 mg/kg), an inhibitor of NO synthesis. The hypoxic pressor response, as assessed by the absolute increase in pulmonary arterial pressure (PAP) and total pulmonary resistance (TPR), was reduced in infected animals compared with control animals. The change in PAP and TPR was 8.5 +/- 0.7 and 0.053 +/- 0.007, respectively, in control animals compared with 5.9 +/- 0.5 and 0.041 +/- 0.011 in infected animals. After L-NMMA the increase in PAP and TPR during hypoxia was greater in both control and infected animals. However, treatment with L-NMMA did not affect the difference between control and infected animals. We conclude that excess release of NO does not account for the attenuated hypoxic pressor response in pneumonia.


1995 ◽  
Vol 269 (4) ◽  
pp. R807-R813 ◽  
Author(s):  
T. Hirai ◽  
T. I. Musch ◽  
D. A. Morgan ◽  
K. C. Kregel ◽  
D. E. Claassen ◽  
...  

Recent studies have suggested that the interaction between the sympathetic nervous system and nitric oxide (NO) or nitrosyl factors may be an important means by which arterial blood pressure is regulated. We investigated whether NO synthase (NOS) inhibition modulates basal sympathetic nerve discharge (SND) in baroreceptor-innervated and -denervated, chloralose-anesthetized Sprague-Dawley rats. We recorded mean arterial pressure (MAP), renal SND, and lumbar SND before and after administration of the NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg iv). Two minutes after L-NAME administration in baroreceptor-innervated rats, MAP increased (+23 +/- 3 mmHg), whereas renal (-45 +/- 6%, n = 7) and lumbar (-35 +/- 2%, n = 6) SND significantly decreased from control levels. These changes persisted for up to 20 min after L-NAME administration. In baroreceptor-denervated rats, L-NAME increased MAP (+40 +/- 6 mmHg) and decreased lumbar SND (n = 7) (-37 +/- 10% from control at 20 min post-L-NAME). In contrast, renal SND progressively increased (+33 +/- 8% at 20 min post-L-NAME) from control after L-NAME administration in baroreceptor-denervated rats (n = 7). These results demonstrate that NOS inhibition can produce nonuniform changes in SND in baroreceptor-denervated rats and suggest that endogenous nitrosyl factors provide tonic excitation to lumbar SND, whereas they provide a tonic restraint to renal SND.


1984 ◽  
Vol 247 (1) ◽  
pp. H88-H94 ◽  
Author(s):  
J. T. Fleming ◽  
I. G. Joshua

Male Sprague-Dawley rats (140-180 g) were anesthetized with alpha-chloralose and urethan. The cremaster muscle with intact blood supply and neural innervation was suspended in a tissue bath containing a modified Krebs solution. With the use of television microscopy the luminal diameters of third-order arterioles (14-32 micron) were measured before and after adding angiotensin II (ANG II, bath concn 10(-6) M). The arterioles responded to ANG II with an initial, transient constriction followed by a more prolonged dilation to a diameter larger than the control diameter. Pretreating the muscle with [Sar1, Ile8]ANG II significantly attenuated both the arteriolar constriction and subsequent dilation induced by ANG II. Treatment of the cremaster muscle with mefenamic acid or indomethacin, inhibitors of prostaglandin synthesis, produced a significant reduction in the diameter of the arterioles and abolished the dilator phase of the arteriolar response to ANG II without preventing the ANG II-induced constriction. These results demonstrate that within the intact microcirculation, ANG II produces both an arteriolar constriction and a dilation that are mediated by specific ANG II receptors. The ANG II-induced dilation of the arterioles appears to be caused by increased prostaglandin synthesis and release.


1998 ◽  
Vol 274 (4) ◽  
pp. R1158-R1161
Author(s):  
Evvi-Lynn M. Rollins ◽  
James E. Fewell

In newborns and adults of a number of species including humans, exposure to acute hypoxemia produces a “regulated” decease in core temperature, the mechanism of which is unknown. Considering that various cortical areas participate in autonomic regulation including thermoregulation, the present experiments were carried out to test the hypothesis that the cerebral cortex plays a role in modulating the regulated decrease in core temperature during acute hypoxemia. This hypothesis was tested by determining the core temperature response to acute hypoxemia in chronically instrumented adult Sprague-Dawley rats before and after cortical spreading depression (i.e., functional decortication) was produced by the local application of potassium chloride to the dura overlying the cerebral hemispheres. There was no effect of cortical spreading depression on baseline core temperature. Core temperature decreased during acute hypoxemia in a similar fashion when the cerebral cortex was intact as well as during functional decortication. Thus our data do not support the hypothesis that the cerebral cortex modulates the regulated decrease in core temperature that occurs in adult rats during acute hypoxemia.


2005 ◽  
Vol 288 (1) ◽  
pp. H256-H262 ◽  
Author(s):  
Ana Carolina Rodrigues Dias ◽  
Melissa Vitela ◽  
Eduardo Colombari ◽  
Steven W. Mifflin

The neuromodulatory effect of NO on glutamatergic transmission has been studied in several brain areas. Our previous single-cell studies suggested that NO facilitates glutamatergic transmission in the nucleus of the solitary tract (NTS). In this study, we examined the effect of the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME) on glutamatergic and reflex transmission in the NTS. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) from Inactin-anesthetized Sprague-Dawley rats. Bilateral microinjections of l-NAME (10 nmol/100 nl) into the NTS did not cause significant changes in basal MAP, HR, or RSNA. Unilateral microinjection of ( RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, 1 pmol/100 nl) into the NTS decreased MAP and RSNA. Fifteen minutes after l-NAME microinjections, AMPA-evoked cardiovascular changes were significantly reduced. N-methyl-d-aspartate (NMDA, 0.5 pmol/100 nl) microinjection into the NTS decreased MAP, HR, and RSNA. NMDA-evoked falls in MAP, HR, and RSNA were significantly reduced 30 min after l-NAME. To examine baroreceptor and cardiopulmonary reflex function, l-NAME was microinjected at multiple sites within the rostro-caudal extent of the NTS. Baroreflex function was tested with phenylephrine (PE, 25 μg iv) before and after l-NAME. Five minutes after l-NAME the decrease in RSNA caused by PE was significantly reduced. To examine cardiopulmonary reflex function, phenylbiguanide (PBG, 8 μg/kg) was injected into the right atrium. PBG-evoked hypotension, bradycardia, and RSNA reduction were significantly attenuated 5 min after l-NAME. Our results indicate that inhibition of NOS within the NTS attenuates baro- and cardiopulmonary reflexes, suggesting that NO plays a physiologically significant neuromodulatory role in cardiovascular regulation.


Sign in / Sign up

Export Citation Format

Share Document