Estrogen and testosterone have opposing effects on chronic cardiac remodeling and function in mice with myocardial infarction

2003 ◽  
Vol 284 (5) ◽  
pp. H1560-H1569 ◽  
Author(s):  
Maria A. Cavasin ◽  
Steadman S. Sankey ◽  
Ai-Li Yu ◽  
Shreevidya Menon ◽  
Xiao-Ping Yang

Premenopausal women are much less prone to develop cardiovascular disease than men of similar age, but this advantage no longer applies after menopause. We previously found that male mice have a significantly higher rate of cardiac rupture than females during the acute phase of myocardial infarction (MI); however, the effects of sexual hormones on chronic remodeling are unknown. We hypothesized that estrogen (E) may protect the heart from chronic remodeling and deterioration of function post-MI, whereas testosterone (T) may have adverse effects. Mice (4 wk old) of both genders were divided into four groups: female groups consisted of 1) sham ovariectomy (S-Ovx) + placebo (P) (S-Ovx + P), 2) S-Ovx + T, 3) Ovx + P, and 4) Ovx + T; and male groups consisted of 1) sham castration (S-Cas)+ P (S-Cas + P), 2) S-Cas + 17β-estradiol (E), 3) Cas + P, and 4) Cas + E. MI was induced 6 wk later. Echocardiography was performed to assess cardiac function and left ventricular dimensions (LVD). Myocyte cross-sectional area (MCSA) was measured at the end of the study. In females, both testosterone and ovariectomy decreased ejection fraction (EF) and increased LVD, and when combined they aggravated cardiac function and remodeling further. Testosterone significantly increased MCSA. In males, castration or estrogen increased EF and reduced LVD, whereas castration significantly reduced MCSA. Our data suggest that estrogen prevents deterioration of cardiac function and remodeling after MI, but testosterone worsens cardiac dysfunction and remodeling and has a pronounced effect when estrogen levels are reduced.

2004 ◽  
Vol 286 (4) ◽  
pp. H1416-H1424 ◽  
Author(s):  
Margot C. LaPointe ◽  
Mariela Mendez ◽  
Alicia Leung ◽  
Zhenyin Tao ◽  
Xiao-Ping Yang

Cyclooxygenase (COX)-2 is expressed in the heart in animal models of ischemic injury. Recent studies have suggested that COX-2 products are involved in inflammatory cell infiltration and fibroblast proliferation in the heart. Using a mouse model, we questioned whether 1) myocardial infarction (MI) in vivo induces COX-2 expression chronically, and 2) COX-2 inhibition reduces collagen content and improves cardiac function in mice with MI. MI was produced by ligation of the left anterior descending coronary artery in mice. Two days later, mice were treated with 3 mg/kg NS-398, a selective COX-2 inhibitor, or vehicle in drinking water for 2 wk. After the treatment period, mice were subjected to two-dimensional M-mode echocardiography to determine cardiac function. Hearts were then analyzed for determination of infarct size, interstitial collagen content, brain natriuretic peptide (BNP) mRNA, myocyte cross-sectional area, and immunohistochemical staining for transforming growth factor (TGF)-β and COX-2. COX-2 protein, detected by immunohistochemistry, was increased in MI versus sham hearts. MI resulted in increased left ventricular systolic and diastolic dimension and decreased ejection fraction, fractional shortening, and cardiac output. NS-398 treatment partly reversed these detrimental changes. Myocyte cross-sectional area, a measure of hypertrophy, was decreased by 30% in the NS-398 versus vehicle group, but there was no effect on BNP mRNA. The interstitial collagen fraction increased from 5.4 ± 0.4% in sham hearts to 10.4 ± 0.9% in MI hearts and was decreased to 7.9 ± 0.6% in NS-398-treated hearts. A second COX-2 inhibitor, rofecoxib (MK-0966), also decreased myocyte cross-sectional area and interstitial collagen fraction. TGF-β, a key regulator of collagen synthesis, was increased in MI hearts. NS-398 treatment reduced TGF-β immunostaining by 40%. NS-398 treatment had no effect on infarct size. These results suggest that COX-2 products contribute to cardiac remodeling and functional deficits after MI. Thus selected inhibition of COX-2 may be a therapeutic target for reducing myocyte damage after MI.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Hongmei Peng ◽  
Jiang Xu ◽  
Xiao-Ping Yang ◽  
Xiangguo Dai ◽  
Edward Petersion ◽  
...  

N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory, anti-fibrotic and pro-angiogenic effects. We previously observed that Ac-SDKP reduces incidence of cardiac rupture in mice with acute myocardial infarction (MI), which is associated with its anti-inflammatory and pro-angiogenic properties. We hypothesized that Ac-SDKP, via its anti-fibrotic and pro-angiogenic actions, ameliorates left ventricular (LV) dilatation and fibrosis, thus improving cardiac function post-MI. C57BL/6J mice were divided into three groups: 1) sham MI, 2) MI + vehicle (VEH), and 3) MI + Ac-SDKP. Ac-SDKP (1.6 mg/kg/day) was given immediately after MI induction ( i.p. via osmotic pump) for 5 weeks. Cardiac remodeling and function were assessed by echocardiography, and interstitial collagen fraction (ICF) and capillary density was determined histologically. We found that Ac-SDKP 1) reduced LV remodeling, evidenced by decreased LV chamber dimensions and areas, and reduced ICF and increased capillary density, with no changes in posterior wall thickness and LV weight (LVW), and 2) improved cardiac function, demonstrated by increased fractional shortening (FS) and ejection fraction (EF) (Table). We conclude that in murine models of MI, Ac-SDKP protects the heart from more severe remodeling and dysfunction, possibly via its anti-fibrotic and pro-angiogenic actions. Thus, the use of Ac-SDKP or its analogues could be a new and effective alternative in restoring cardiac function in patients after MI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Meifang Wu ◽  
Yanguang Guo ◽  
Ying Wu ◽  
Kaizu Xu ◽  
Liming Lin

Objectives: To investigate the effect and mechanism of sacubitril/valsartan on myocardial fibrosis in rats following experimental myocardial infarction and in TGF-β1-treated myocardial fibroblasts.Methods: Male Sprague-Dawley (SD) rats were subjected to coronary artery ligation to establish myocardial infarction and intragastrically fed vehicle, valsartan (Val, 32 mg/kg, once-daily) or sacubitril/valsartan (Sac/Val, 68 mg/kg, once-daily) for 4 weeks. In parallel, myocardial fibroblasts (MFs) isolated from neonatal SD rats were exposed to hypoxia and treated with TGF-β1 (5 ng/ml) plus vehicle, Val (107–10–5 M) or Sac/Val (107–105 M). Rat cardiac function and fibrosis were measured by echocardiography and histological method, respectively. MFs viability and collagen synthesis were determined by cell counting kit-8 and enzyme-linked immunosorbent assay, respectively. Protein expressions of TGF-β1, Smad3, phosphorylated Smad3 (p-Smad3), and p-Smad3 subcellular localization were detected by immunoblotting and immunocytochemistry.Results: Sac/Val significantly improved cardiac structure and function in rats after myocardial infarction, including decreased left ventricular end-diastolic diameter and interventricular septal thickness, increased ejection fraction, and reduced myocardial collagen volume fraction and type Ⅰ and type Ⅲ collagen levels, and this effect was superior to that of Val. Besides, Sac/Val inhibited myocardial TGF-β1 and p-Smad3 protein expression better than Val. Mechanically, Sac/Val significantly attenuated TGF-β1-induced proliferation and collagen synthesis of MFs, and inhibit Smad3 phosphorylation and nucleus translocation, and this effect outperformed Val. Overexpression and silencing of Smad3 enhanced and reversed the inhibitory effects of Sac/Val on TGF-β1-induced collagen synthesis by MFs, respectively.Conclusions: Sacubitril/valsartan improves cardiac function and fibrosis in rats after experimental myocardial infarction, and this effect is related to the inhibition of collagen synthesis in myocardial fibroblasts by inhibiting the TGF/Smads signaling pathway.


2021 ◽  
Vol 11 (01) ◽  
pp. e120-e124
Author(s):  
Duaa M. Raafat ◽  
Osama M. EL-Asheer ◽  
Amal A. Mahmoud ◽  
Manal M. Darwish ◽  
Naglaa S. Osman

AbstractDilated cardiomyopathy (DCM) is the third leading cause of heart failure in pediatrics. The exact etiology of DCM is unknown in more than half of the cases. Vitamin D receptors are represented in cardiac muscles, endothelium, and smooth muscles of blood vessels suggesting that vitamin D could have a vital cardioprotective function. This study aimed to assess serum level of vitamin D in children with idiopathic DCM and to correlate the serum level of vitamin D with the left ventricular dimensions and function. This study is a descriptive cross-sectional single-center study, includes 44 children of both sexes, diagnosed as idiopathic DCM. Serum level of vitamin D was assessed and correlated with the left ventricular dimensions and function. Mean age of studied children was 6.08 ± 4.4 years. Vitamin D deficiency was found in 90.9% of children with idiopathic DCM with a mean level 13.48 ng/mL. There was a negative correlation between vitamin D level and fraction shortening and left ventricular end-diastolic diameter in children with DCM. Vitamin D level is not only significantly low in children with idiopathic DCM but it is also significantly correlated with the degree of left ventricular dysfunction.


2019 ◽  
Vol 21 (7) ◽  
pp. 862-873 ◽  
Author(s):  
Salva R. Yurista ◽  
Herman H.W. Silljé ◽  
Silke U. Oberdorf‐Maass ◽  
Elisabeth‐Maria Schouten ◽  
Mario G. Pavez Giani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document