Vascular interleukin-10 protects against LPS-induced vasomotor dysfunction

2005 ◽  
Vol 289 (2) ◽  
pp. H624-H630 ◽  
Author(s):  
Carol A. Gunnett ◽  
Donald D. Lund ◽  
Frank M. Faraci ◽  
Donald D. Heistad

We tested the hypotheses that 1) systemic IL-10, after adenoviral gene transfer, protects arteries from impaired relaxation produced by LPS; 2) local expression of IL-10 within the arterial wall protects against vasomotor dysfunction after LPS; and 3) IL-10 protects against vascular dysfunction mediated by inducible NO synthase (iNOS) after LPS. In IL-10-deficient (IL-10−/−) and wild-type (WT, IL-10+/+) mice, LPS in vivo impaired relaxation of arteries to acetylcholine and gene transfer of IL-10 improved responses to acetylcholine. Superoxide levels were elevated in arteries after LPS, and increased levels of superoxide were prevented by gene transfer of IL-10. In arteries incubated with a low concentration of LPS in vitro to eliminate systemic effects of LPS and IL-10 from nonvascular sources, responses to acetylcholine were impaired in IL-10-deficient mice and impairment was largely prevented by gene transfer in vitro of IL-10. In arteries from WT mice in vitro, the low concentration of LPS did not impair responses to acetylcholine. Thus IL-10 within the vessel wall protects against LPS-induced dysfunction. In IL-10-deficient mice, aminoguanidine, which inhibits iNOS, protected against vasomotor dysfunction after LPS. In arteries from iNOS-deficient mice, LPS did not impair responses to acetylcholine. These findings suggest that both systemic and local effects of IL-10 provide important protection of arteries against an inflammatory stimulus and that IL-10 decreases iNOS-mediated impairment of vasorelaxation after LPS.

2019 ◽  
Author(s):  
Kristina A.M. Arendt ◽  
Giannoula Ntaliarda ◽  
Vasileios Armenis ◽  
Danai Kati ◽  
Christin Henning ◽  
...  

ABSTRACTKRAS inhibitors perform inferior to other targeted drugs. To investigate a possible reason for this, we treated cancer cells with KRAS inhibitors deltarasin (targeting phosphodiesterase-δ), cysmethynil (targeting isoprenylcysteine carboxylmethyltransferase), and AA12 (targeting KRASG12C), and silenced/overexpressed mutant KRAS using custom vectors. We show that KRAS-mutant tumor cells exclusively respond to KRAS blockade in vivo, because the oncogene co-opts host myeloid cells via a C-C-motif chemokine ligand 2/interleukin-1β signaling loop for sustained tumorigenicity. Indeed, KRAS-mutant tumors did not respond to deltarasin in Ccr2 and Il1b gene-deficient mice, but were deltarasin-sensitive in wild-type and Ccr2-deficient mice adoptively transplanted with wild-type murine bone marrow. A KRAS-dependent pro-inflammatory transcriptome was prominent in human cancers with high KRAS mutation prevalence and predicted poor survival. Hence the findings support that in vitro systems are suboptimal for anti-KRAS drug screens, and suggest that interleukin-1β blockade might be specific for KRAS-mutant cancers.


2001 ◽  
Vol 280 (2) ◽  
pp. G291-G297 ◽  
Author(s):  
Cameron W. Lush ◽  
Gediminas Cepinskas ◽  
William J. Sibbald ◽  
Peter R. Kvietys

In vitro, nitric oxide (NO) decreases leukocyte adhesion to endothelium by attenuating endothelial adhesion molecule expression. In vivo, lipopolysaccharide-induced leukocyte rolling and adhesion was greater in inducible NO synthase (iNOS)−/− mice than in wild-type mice. The objective of this study was to assess E- and P-selectin expression in the microvasculature of iNOS−/− and wild-type mice subjected to acute peritonitis by cecal ligation and perforation (CLP). E- and P-selectin expression were increased in various organs within the peritoneum of wild-type animals after CLP. This CLP-induced upregulation of E- and P-selectin was substantially reduced in iNOS−/− mice. Tissue myeloperoxidase (MPO) activity was increased to a greater extent in the gut of wild-type than in iNOS−/− mice subjected to CLP. In the lung, the reduced expression of E-selectin in iNOS−/− mice was not associated with a decrease in MPO. Our findings indicate that NO derived from iNOS plays an important role in sepsis-induced increase in selectin expression in the systemic and pulmonary circulation. However, in iNOS−/− mice, sepsis-induced leukocyte accumulation is affected in the gut but not in the lungs.


1997 ◽  
Vol 186 (11) ◽  
pp. 1853-1863 ◽  
Author(s):  
Tao Tang ◽  
Alexander Rosenkranz ◽  
Karel J.M. Assmann ◽  
Michael J. Goodman ◽  
Jose-Carlos Gutierrez-Ramos ◽  
...  

Mac-1 (αmβ2), a leukocyte adhesion receptor, has been shown in vitro to functionally interact with Fcγ receptors to facilitate immune complex (IC)–stimulated polymorphonuclear neutrophil (PMN) functions. To investigate the relevance of Mac-1–FcγR interactions in IC-mediated injury in vivo, we induced a model of Fc-dependent anti–glomerular basement membrane (GBM) nephritis in wild-type and Mac-1–deficient mice by the intravenous injection of anti-GBM antibody. The initial glomerular PMN accumulation was equivalent in Mac-1 null and wild-type mice, but thereafter increased in wild-type and decreased in mutant mice. The absence of Mac-1 interactions with obvious ligands, intercellular adhesion molecule 1 (ICAM-1), and C3 complement, is not responsible for the decrease in neutrophil accumulation in Mac-1– deficient mice since glomerular PMN accumulation in mice deficient in these ligands was comparable to those in wild-type mice. In vitro studies showed that spreading of Mac-1–null PMNs to IC-coated dishes was equivalent to that of wild-type PMNs at 5–12 min but was markedly reduced thereafter, and was associated with an inability of mutant neutrophils to redistribute filamentous actin. This suggests that in vivo, Mac-1 is not required for the initiation of Fc-mediated PMN recruitment but that Mac-1–FcγR interactions are required for filamentous actin reorganization leading to sustained PMN adhesion, and this represents the first demonstration of the relevance of Mac-1–FcγR interactions in vivo. PMN-dependent proteinuria, maximal in wild-type mice at 8 h, was absent in Mac-1 mutant mice at all time points. Complement C3–deficient mice also had significantly decreased proteinuria compared to wild-type mice. Since Mac-1 on PMNs is the principal ligand for ic3b, an absence of Mac-1 interaction with C3 probably contributed to the abrogation of proteinuria in Mac-1–null mice.


2005 ◽  
Vol 73 (4) ◽  
pp. 2101-2108 ◽  
Author(s):  
Laurence U. Buxbaum ◽  
Phillip Scott

ABSTRACT Infection of C57BL/6 (B6) mice with Leishmania mexicana is associated with a minimal immune response and chronic disease. Here we show that B6 interleukin 10−/− (IL-10−/−) mice resolve their lesions and exhibit increased gamma interferon (IFN-γ), nitric oxide production, and delayed-type hypersensitivity. This enhanced resistance was dependent upon IL-12p40, since treatment of L. mexicana-infected IL-10−/− mice with anti-IL-12p40 monoclonal antibody abrogated healing. Antibody-opsonized L. mexicana induced IL-10 production by B6 macrophages in vitro, implicating antibody binding to Fc receptors as a mechanism involved in IL-10 production in this infection. Furthermore, B6 FcRγ−/− mice resolve L. mexicana lesions, and lymph node cells from these mice produced less IL-10 and more IFN-γ than cells from infected wild-type mice. These data demonstrate that removal of IL-10 or FcγR leads to resolution of L. mexicana disease and support a model in which ligation of FcγR by L. mexicana-bound immunoglobulin G promotes IL-10 production, leading to chronic disease.


Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 624-634 ◽  
Author(s):  
JE Dick ◽  
S Kamel-Reid ◽  
B Murdoch ◽  
M Doedens

Abstract The ability to transfer new genetic material into human hematopoietic cells provides the foundation for characterizing the organization and developmental program of human hematopoietic stem cells. It also provides a valuable model in which to test gene transfer and long-term expression in human hematopoietic cells as a prelude to human gene therapy. At the present time such studies are limited by the absence of in vivo assays for human stem cells, although recent descriptions of the engraftment of human hematopoietic cells in immune-deficient mice may provide the basis for such an assay. This study focuses on the establishment of conditions required for high efficiency retrovirus- mediated gene transfer into human hematopoietic progenitors that can be assayed in vitro in short-term colony assays and in vivo in immune- deficient mice. Here we report that a 24-hour preincubation of human bone marrow in 5637-conditioned medium, before infection, increases gene transfer efficiency into in vitro colony-forming cells by sixfold; interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) provide the same magnitude increase as 5637-conditioned medium. In contrast, incubation in recombinant growth factors IL-1, IL-3, and granulocyte- macrophage colony-stimulating factor increases gene transfer efficiency by 1.5- to 3-fold. Furthermore, preselection in high concentrations of G418 results in a population of cells significantly enriched for G418- resistant progenitors (up to 100%). These results, obtained using detailed survival curves based on colony formation in G418, have been substantiated by directly detecting the neo gene in individual colonies using the polymerase chain reaction. Using these optimized protocols, human bone marrow cells were genetically manipulated with a neo retrovirus vector and transplanted into immune-deficient bg/nu/xid mice. At 1 month and 4 months after the transplant, the hematopoietic tissues of these animals remained engrafted with genetically manipulated human cells. More importantly, G418-resistant progenitors that contained the neo gene were recovered from the bone marrow and spleen of engrafted animals after 4 months. These experiments establish the feasibility of characterizing human stem cells using the unique retrovirus integration site as a clonal marker, similar to techniques developed to elucidate the murine stem cell hierarchy.


2019 ◽  
Vol 12 (574) ◽  
pp. eaao7232 ◽  
Author(s):  
Katsuhiko Itoh ◽  
Gen Kondoh ◽  
Hitoshi Miyachi ◽  
Manabu Sugai ◽  
Yoshiyuki Kaneko ◽  
...  

The posttranslational modification of histones is crucial in spermatogenesis, as in other tissues; however, during spermiogenesis, histones are replaced with protamines, which are critical for the tight packaging of the DNA in sperm cells. Protamines are also posttranslationally modified by phosphorylation and dephosphorylation, which prompted our investigation of the underlying mechanisms and biological consequences of their regulation. On the basis of a screen that implicated the heat shock protein Hspa4l in spermatogenesis, we generated mice deficient in Hspa4l (Hspa4l-null mice), which showed male infertility and the malformation of sperm heads. These phenotypes are similar to those of Ppp1cc-deficient mice, and we found that the amount of a testis- and sperm-specific isoform of the Ppp1cc phosphatase (Ppp1cc2) in the chromatin-binding fraction was substantially less in Hspa4l-null spermatozoa than that in those of wild-type mice. We further showed that Ppp1cc2 was a substrate of the chaperones Hsc70 and Hsp70 and that Hspa4l enhanced the release of Ppp1cc2 from these complexes, enabling the freed Ppp1cc2 to localize to chromatin. Pull-down and in vitro phosphatase assays suggested the dephosphorylation of protamine 2 at serine 56 (Prm2 Ser56) by Ppp1cc2. To confirm the biological importance of Prm2 Ser56 dephosphorylation, we mutated Ser56 to alanine in Prm2 (Prm2 S56A). Introduction of this mutation to Hspa4l-null mice (Hspa4l−/−; Prm2S56A/S56A) restored the malformation of sperm heads and the infertility of Hspa4l−/− mice. The dephosphorylation signal to eliminate phosphate was crucial, and these results unveiled the mechanism and biological relevance of the dephosphorylation of Prm2 for sperm maturation in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 202-202
Author(s):  
Takafumi Nakao ◽  
Amy E Geddis ◽  
Norma E. Fox ◽  
Kenneth Kaushansky

Abstract Thrombopoietin (TPO), the primary regulator of megakaryocyte (MK) and platelet formation, modulates the activity of multiple signal transduction molecules, including those in the Jak/STAT, p42/p44 MAPK, and phosphatidylinositol 3-kinase (PI3K)/Akt pathways. In the previous study, we reported that PI3K and Akt are necessary for TPO-induced cell cycle progression of primary MK progenitors. The absence of PI3K activity results in a block of transition from G1 to S phase in these cells (Geddis AE et al. JBC2001276:34473–34479). However, the molecular events secondary to the activation of PI3K/Akt responsible for MK proliferation remain unclear. In this study we show that FOXO3a and its downstream target p27Kip1 play an important role in TPO-induced proliferation of MK progenitors. TPO induces phosphorylation of Akt and FOXO3a in both UT-7/TPO, a megakaryocytic cell line, and primary murine MKs in a PI3K dependent fashion. Cell cycle progression of UT-7/TPO cells is blocked in G1 phase by inhibition of PI3K. We found that TPO down-modulates p27Kip1 expression at both the mRNA and protein levels in UT-7/TPO cells and primary MKs in a PI3K dependent fashion. UT-7/TPO stably expressing constitutively active Akt or a dominant-negative form of FOXO3a failed to induce p27Kip1 expression after TPO withdrawal. Induced expression of an active form of FOXO3a resulted in increased p27Kip1 expression in this cell line. In an attempt to assess whether FOXO3a has an effect of MK proliferation in vivo, we compared the number of MKs in Foxo3a-deficient mice and in wild type controls. Although peripheral blood cell counts of erythrocytes, neutrophils, monocytes and platelets were normal in the Foxo3a-deficient mice, total nucleated marrow cell count of Foxo3a-deficient mice were 60% increased compared with wild type controls. In addition, the increase of MKs was more profound than that of total nucleated marrow cells; CD41+ MKs from Foxo3a-deficient mice increased 2.1-fold, and mature MKs with 8N and greater ploidy increased 2.5-fold, compared with wild type controls. Taken together with the previous observation that p27Kip1-deficient mice also display increased numbers of MK progenitors, our findings strongly suggest that the effect of TPO on MK proliferation is mediated by PI3K/Akt-induced FOXO3a inactivation and subsequent p27Kip1 down-regulation in vitro and in vivo.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 197-197
Author(s):  
Masami Niiya ◽  
Masayuki Endo ◽  
Philip W. Zoltick ◽  
Nidal E. Muvarak ◽  
David G. Motto ◽  
...  

Abstract ADAMTS13, a member of A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS) family, is mainly synthesized in the hepatic stellate cells, endothelial cells and megakaryocytes or platelets. It controls the sizes of von Willebrand factor (VWF) multimers by cleaving VWF at the Tyr1605-Met1606 bond. Genetic deficiency of plasma ADAMTS13 activity results in hereditary thrombotic thrombocytopenic purpura (TTP), also named Upshaw-Schülman syndrome. To develop a potential gene therapy approach and to determine the domains of ADAMTS13 required for recognition and cleavage of VWF in vivo, a self-inactivating lentiviral vector encoding human wild-type ADAMTS13 or variant truncated after the spacer domain (construct MDTCS) was administrated by intra-amniotic injection on embryonic day 8. Direct stereomicroscopy and immunofluorescent microscopic analysis revealed that the green fluorescent protein (GFP) reporter, ADAMTS13 and MDTCS were predominantly expressed in the heart, kidneys and skin. The synthesized ADAMTS13 and truncated variant were detectable in mouse plasma by immunoprecipitation and Western blot, as well as by proteolytic cleavage of FRETS-VWF73 substrate. The levels of proteolytic activity in plasma of mice expressing ADAMTS13 and MDTCS were 5 ± 7% and 60 ± 70%, respectively using normal human plasma as a standard, and this proteolytic activity persisted for at least 24 weeks in Adamts13−/−mice and 42 weeks in wild-type mice tested (the duration of observation). The mice expressing both recombinant ADAMTS13 and MDTCS showed a significantly decreased ratio of plasma VWF collagen-binding activity to antigen and a reduction in VWF multimer sizes as compared to those in the controls. Moreover, the mice expressing ADAMTS13 and MDTCS showed a significant prolongation of ferric chloride-induced carotid arterial occlusion time (9.0 ± 0.6 and 25.2 ± 3.2 min, respectively) as compared to the Adamts13−/− mice expressing GFP alone (5.6 ± 0.5 min) (p<0.01). The ferric chloride-induced carotid occlusion time in Adamts13−/− mice expressing ADAMTS13 was almost identical to that in wild type mice with same genetic background (C56BL/6) (8.0 ± 0.2 min) (p>0.05). The data demonstrate the correction of the prothrombotic phenotype in Adamts13−/−mice by gene transfer to the fetus by viral vectors encoding human wild type ADAMTS13 and the carboxyl terminal truncated variant (MDTCS), supporting the feasibility of developing a gene therapy based treatment for hereditary TTP. The discrepancy in the proteolytic activity of MDTCS between in vitro (Zhang P et al. Blood, 2007 in press) and in vivo in the present study suggests the potential cofactors in murine circulation that may rescue the defective proteolytic activity of the carboxyl-terminal truncated ADAMTS13 protease seen in vitro.


Sign in / Sign up

Export Citation Format

Share Document