Proximal and distal dog coronary arteries respond differently to basal EDRF but not to NO

1989 ◽  
Vol 256 (3) ◽  
pp. H828-H831 ◽  
Author(s):  
U. Hoeffner ◽  
C. Boulanger ◽  
P. M. Vanhoutte

Experiments were designed to analyze the effects of endothelium-derived relaxing factor(s) (EDRF; released basally or on stimulation with acetylcholine) and nitric oxide (NO) on smooth muscle of coronary arteries of different diameter. During contractions of the bioassay ring evoked with prostaglandin F2 alpha, the relaxations caused by basal EDRF were greater in the distal than in the proximal coronary arteries, whereas there was no difference in response to the EDRF released by acetylcholine. During direct superfusion, NO caused similar relaxations in proximal and distal coronary artery rings. Optimal tension, prostaglandin F2 alpha-induced contractions, and relaxations caused by sodium nitroprusside were comparable in both preparations. In rings of proximal and distal coronary artery studied in organ chambers, acetylcholine caused comparable endothelium-dependent, whereas sodium nitroprusside and NO cause comparable endothelium-independent relaxations. These experiments indicate a difference in response of different-sized coronary arteries to basally released EDRF and suggest that the basally released factor differs from NO.

1989 ◽  
Vol 257 (1) ◽  
pp. H330-H333 ◽  
Author(s):  
U. Hoeffner ◽  
M. Feletou ◽  
N. A. Flavahan ◽  
P. M. Vanhoutte

Experiments were designed to analyze the effects of ouabain on the response of vascular smooth muscle to endothelium-derived relaxing factors released under basal conditions and on stimulation with acetylcholine or bradykinin. Bioassay rings of canine coronary artery (without endothelium) were superfused with perfusate from canine left circumflex coronary arteries with endothelium (donor arteries). During contractions of the bioassay ring evoked by prostaglandin F2 alpha, the relaxations caused by endothelium-derived relaxing factor(s), released under basal conditions or on exposure of the endothelial cells of the donor artery to maximally effective concentrations of acetylcholine, were reduced by incubation of the bioassay ring with ouabain. However, the relaxations evoked by infusion of bradykinin were not altered by incubation of the bioassay rings with ouabain. These experiments demonstrate the release of two endothelium-derived relaxing factors that can be distinguished using ouabain.


Physiology ◽  
1991 ◽  
Vol 6 (3) ◽  
pp. 103-107
Author(s):  
M Gerova

Sympathetic stimulation induces a primary and secondary effect on smooth muscle of conduit coronary arteries. The former causes contraction, mediated by norepinephrine, and the latter, dilatation. The dilatation is due to endothelium-derived relaxing factor released as a consequence of the increased coronary blood flow.


1989 ◽  
Vol 256 (4) ◽  
pp. H968-H973 ◽  
Author(s):  
H. Shimokawa ◽  
P. M. Vanhoutte

Dietary supplementation with cod-liver oil significantly augments endothelium-dependent relaxations in porcine coronary arteries. The present study was designed to examine the effect of dietary administration of omega 3 polyunsaturated fatty acids (mainly eicosapentaenoic acid, the major component of fish oil) on endothelium-dependent relaxations in porcine coronary arteries. Male Yorkshire pigs were maintained 4 wk on a regular diet with or without supplementation with purified eicosapentaenoic acid (3.5 g/day) and docosahexaenoic acid (1.5 g/day). Endothelium-dependent relaxations were examined in vitro. In rings from the treated group, endothelium-dependent relaxations were augmented in response to bradykinin, serotonin, and ADP, but not to the calcium ionophore A23187. These augmentations were not altered by indomethacin but were significantly inhibited by methylene blue, an inhibitor of guanylate cyclase. In the treated group, endothelium-dependent relaxations to aggregating platelets also were significantly augmented; platelet-induced contractions of quiescent rings were inhibited more by the presence of the endothelium than in arteries from the control group. Bioassay experiments demonstrated that the release of endothelium-derived relaxing factor(s) by bradykinin and relaxations of the vascular smooth muscle to the factor(s) were greater in arteries from the treated group. These observations indicate that dietary omega 3 polyunsaturated fatty acids augment receptor-operated endothelium-dependent relaxations, partly due to the augmented release of endothelium-derived relaxing factor(s) and partly due to the augmented relaxation of the vascular smooth muscle to the factor(s).


1989 ◽  
Vol 257 (6) ◽  
pp. H1910-H1916 ◽  
Author(s):  
V. M. Miller ◽  
P. M. Vanhoutte

Nitric oxide may be an endothelium-derived relaxing factor in systemic arteries and pulmonary veins. The endothelium-derived relaxing factor of systemic veins has not been characterized. Experiments were designed to determine whether the endothelium-derived relaxing factor of systemic veins shared chemical properties and mechanisms of action with nitric oxide. Rings of the canine femoral vein with and without endothelium were suspended in organ chambers for the measurement of isometric force. In rings without endothelium, relaxations to nitric oxide were augmented by superoxide dismutase plus catalase and were inhibited by hemoglobin, methylene blue, and LY 83583. The endothelium-dependent relaxations to acetylcholine and A23187 were not augmented by superoxide dismutase plus catalase but were inhibited by hemoglobin and only moderately reduced by either methylene blue or LY 83583. Relaxations to sodium nitroprusside were not inhibited by methylene blue and LY 83583. Relaxations to sodium nitroprusside were inhibited by ouabain and K+-free solution; those to nitric oxide were not. These results indicate that although the endothelium-derived relaxing factor released from canine systemic veins shares some chemical properties with nitric oxide, the mechanism by which relaxations are induced by the two differ. A factor dissimilar to nitric oxide but acting like sodium nitroprusside may be released by the endothelium of canine systemic veins.


1983 ◽  
Vol 245 (6) ◽  
pp. H937-H941 ◽  
Author(s):  
N. Toda

In helical strips of human epicardial coronary arteries, norepinephrine produced a concentration-related contraction; the contractions relative to those induced by 30 mM K+ were greater in the proximal portion of the arteries than in the distal portion. The amine-induced contraction was suppressed by treatment with phentolamine. Acetylcholine contracted human coronary arteries but, in contrast, relaxed the monkey coronary arteries (both freshly excised and cadaver) previously contracted with prostaglandin F2 alpha. Both the contraction and relaxation induced by acetylcholine were suppressed by atropine. Removal of the endothelium abolished the relaxation of monkey arteries but did not significantly alter the contraction of human arteries. Human coronary arteries responded to histamine with contractions, which were reversed to relaxations following treatment with chlorpheniramine. It is concluded that, as far as the portions of human coronary arteries used in the present study are concerned, the arterial contraction mediated via alpha-adrenoceptors is inversely related to the distance from the coronary artery orifice. Acetylcholine produces contractions of human coronary arteries, possibly due to activation of muscarinic receptors on smooth muscle cells. Histamine-induced contractions appear to be mediated via H1-receptors.


1997 ◽  
Vol 83 (2) ◽  
pp. 434-443 ◽  
Author(s):  
Janet L. Parker ◽  
Mildred L. Mattox ◽  
M. Harold Laughlin

Parker, Janet L., Mildred L. Mattox, and M. Harold Laughlin.Contractile responsiveness of coronary arteries from exercise trained rats. J. Appl. Physiol. 83(2): 434–443, 1997.—The purpose of this study was to determine whether exercise training alters vasomotor reactivity of rat coronary arteries. In vitro isometric microvessel techniques were used to evaluate vasomotor properties of proximal left anterior artery rings (1 ring per animal) from exercise-trained rats (ET; n = 10) subjected to a 12-wk treadmill training protocol (32 m/min, 15% incline, 1 h/day, 5 days/wk) and control rats (C; n = 6) restricted to cage activity. No differences in passive length-tension characteristics or internal diameter (158 ± 9 and 166 ± 9 μm) were observed between vessesls of C and ET rats. Concentration-response curves to K+ (5–100 mM), prostaglandin F2α(10−8–10−4M), and norepinephrine (10−8–10−4) were unaltered ( P > 0.05) in coronary rings from ET rats compared with C rats; however, lower values of the concentration producing 50% of the maximal contractile response in rings from ET rats ( P = 0.05) suggest that contractile sensitivity to norepinephrine was enhanced. Vasorelaxation responses to sodium nitroprusside (10−9-10−4M) and adenosine (10−9-10−4M) were not different ( P > 0.05) between vessels of C and ET rats. However, relaxation responses to the endothelium-dependent vasodilator acetylcholine (ACh; 10−10-10−4M) were significantly blunted ( P < 0.001) in coronary rings from ET animals; maximal ACh relaxation averaged 90 ± 5 and 46 ± 12%, respectively, in vessels of C and ET groups. In additional experiments, two coronary rings (proximal and distal) were isolated from each C ( n = 7) and ET ( n = 7) animal. Proximal coronary artery rings from ET animals demonstrated decreased relaxation responses to ACh; however, ACh-mediated relaxation of distal coronary rings was not different between C and ET groups. N G-monomethyl-l-arginine (inhibitor of nitric oxide synthase) blocked ACh relaxation of all rings. l-Arginine (substrate for nitric oxide synthase) did not improve the blunted ACh relaxation in proximal coronary artery rings from ET rats. These studies suggest that exercise-training selectively decreases endothelium-dependent (ACh) but not endothelium-independent (sodium nitroprusside) relaxation responses of rat proximal coronary arteries; endothelium-dependent relaxation of distal coronary arteries is unaltered by training.


1991 ◽  
Vol 261 (6) ◽  
pp. H1797-H1801 ◽  
Author(s):  
N. M. Flynn ◽  
D. Kenny ◽  
L. R. Pelc ◽  
D. C. Warltier ◽  
Z. J. Bosnjak ◽  
...  

The objective of this study was to determine whether endothelium-mediated relaxation occurs in canine coronary collateral vessels. Responses to endothelium-dependent vasodilators in coronary collateral vessels (250-350 microns) were compared with those obtained in normal native coronary arteries of similar size. Rings of small arteries and collateral vessels were suspended in baths, and tension was recorded. All rings were constricted with prostaglandin F2 alpha (3 microM) and subsequently exposed to cumulative concentrations of acetylcholine or bradykinin. In separate experiments, the procedure was repeated in the presence of 300 microM NG-monomethyl-L-arginine (L-NMMA) to inhibit endothelium-mediated vasodilation. Endothelium-dependent relaxation was further studied in the presence of indomethacin, and endothelium-independent relaxation was examined with sodium nitroprusside. Acetylcholine and bradykinin relaxed both normal native and collateral rings. In preconstricted small arteries and collateral vessels the concentration at 50% of maximal response of acetylcholine was 85.5 +/- 19.5 and 61.0 +/- 14.0 microns, and bradykinin was 11.9 +/- 7.4 and 10.7 +/- 2.1 microns, respectively. L-NMMA attenuated the response to acetylcholine and bradykinin in both groups. The results indicate that endothelium is present and functional in canine coronary collateral vessels. Both small coronary arteries and collateral vessels are equally responsive to endothelium-dependent vasodilators and inhibition of endothelium-dependent relaxing factor.


1994 ◽  
Vol 266 (3) ◽  
pp. H874-H880 ◽  
Author(s):  
T. Murohara ◽  
K. Kugiyama ◽  
M. Ohgushi ◽  
S. Sugiyama ◽  
H. Yasue

To test whether cigarette smoke extract (CSE) influences the endothelial regulation of vascular tone in vitro, pig coronary arterial rings were incubated in organ chambers and isometric tension changes were examined. CSE was prepared by bubbling mainstream smoke of one filter cigarette into phosphate-buffered saline (2 ml). Fresh CSE (3.3, 10, and 30 microliters/ml) elicited initial contraction and subsequent relaxation during stable contraction to prostaglandin F2 alpha (PGF2 alpha). Initial contraction to CSE was dependent on the presence of endothelium, whereas subsequent relaxation was endothelium independent. Initial contraction was significantly attenuated by superoxide dismutase (SOD), methylene blue, but not by catalase. Prior inhibition of the basal release of endothelium-derived relaxing factor by NG-monomethyl-L-arginine also inhibited the initial contraction, and this inhibition was reversed by coincubation with L-arginine but not D-arginine. Subsequent relaxation was significantly potentiated by SOD but was markedly attenuated by methylene blue. CSE reduced ferricytochrome c, and this reduction was significantly inhibited by SOD. In conclusion, CSE induced biphasic tension change, initial contraction, and subsequent relaxation during stable contraction to PGF2 alpha in isolated pig coronary arteries. The initial contraction may be, at least in part, mediated through the degradation of basally released endothelium-derived relaxing factor (nitric oxide) by superoxide anions derived from CSE.


Sign in / Sign up

Export Citation Format

Share Document