Effects of aging on cerebral vascular responses to serotonin in rats

1993 ◽  
Vol 264 (6) ◽  
pp. H2136-H2140 ◽  
Author(s):  
M. A. Hajdu ◽  
R. T. McElmurry ◽  
D. D. Heistad ◽  
G. L. Baumbach

The purpose of this study was to examine effects of aging on responses of large cerebral arteries to serotonin. We measured cerebral microvascular pressure (with a micropipette and servo-null method), diameter of pial arterioles, and cerebral blood flow (microspheres) in adult (12- to 14-mo-old, n = 15) and aged (24- to 27-mo-old, n = 14) Wistar rats. Responses to intra-atrial infusion of serotonin (5 and 50 micrograms.kg-1.min-1) were examined. Infusion of the low dose of serotonin decreased mean arterial pressure and pial arteriolar pressure in adult and aged rats to similar levels. Cerebral blood flow was not reduced in adult or aged rats during infusion of the low dose of serotonin. The high dose of serotonin did not affect mean arterial pressure but reduced pial arteriolar pressure [from 46 +/- 4 to 23 +/- 2 (SE) in adult rats and from 52 +/- 3 to 18 +/- 4 mmHg in aged rats]. The high dose of serotonin increased large-artery resistance from 0.9 +/- 0.1 to 1.6 +/- 0.2 in adult rats and from 0.9 +/- 0.1 to 2.7 +/- 0.6 mmHg.ml-1.min.100 g in aged rats. Cerebral blood flow was reduced significantly in aged rats (from 59 +/- 3 to 41 +/- 6 ml.min-1.100 g-1), but not in adult rats, during infusion of the high dose of serotonin. We conclude that aging augments constrictor responses of large cerebral arteries to intravascular serotonin, which results in a reduction of cerebral blood flow in aged but not adult rats.

1999 ◽  
Vol 91 (3) ◽  
pp. 677-677 ◽  
Author(s):  
Basil F. Matta ◽  
Karen J. Heath ◽  
Kate Tipping ◽  
Andrew C. Summors

Background The effect of volatile anesthetics on cerebral blood flow depends on the balance between the indirect vasoconstrictive action secondary to flow-metabolism coupling and the agent's intrinsic vasodilatory action. This study compared the direct cerebral vasodilatory actions of 0.5 and 1.5 minimum alveolar concentration (MAC) sevoflurane and isoflurane during an propofol-induced isoelectric electroencephalogram. Methods Twenty patients aged 20-62 yr with American Society of Anesthesiologists physical status I or II requiring general anesthesia for routine spinal surgery were recruited. In addition to routine monitoring, a transcranial Doppler ultrasound was used to measure blood flow velocity in the middle cerebral artery, and an electroencephalograph to measure brain electrical activity. Anesthesia was induced with propofol 2.5 mg/kg, fentanyl 2 micro/g/kg, and atracurium 0.5 mg/kg, and a propofol infusion was used to achieve electroencephalographic isoelectricity. End-tidal carbon dioxide, blood pressure, and temperature were maintained constant throughout the study period. Cerebral blood flow velocity, mean blood pressure, and heart rate were recorded after 20 min of isoelectric encephalogram. Patients were then assigned to receive either age-adjusted 0.5 MAC (0.8-1%) or 1.5 MAC (2.4-3%) end-tidal sevoflurane; or age-adjusted 0.5 MAC (0.5-0.7%) or 1.5 MAC (1.5-2%) end-tidal isoflurane. After 15 min of unchanged end-tidal concentration, the variables were measured again. The concentration of the inhalational agent was increased or decreased as appropriate, and all measurements were repeated again. All measurements were performed before the start of surgery. An infusion of 0.01% phenylephrine was used as necessary to maintain mean arterial pressure at baseline levels. Results Although both agents increased blood flow velocity in the middle cerebral artery at 0.5 and 1.5 MAC, this increase was significantly less during sevoflurane anesthesia (4+/-3 and 17+/-3% at 0.5 and 1.5 MAC sevoflurane; 19+/-3 and 72+/-9% at 0.5 and 1.5 MAC isoflurane [mean +/- SD]; P<0.05). All patients required phenylephrine (100-300 microg) to maintain mean arterial pressure within 20% of baseline during 1.5 MAC anesthesia. Conclusions In common with other volatile anesthetic agents, sevoflurane has an intrinsic dose-dependent cerebral vasodilatory effect. However, this effect is less than that of isoflurane.


2008 ◽  
Vol 109 (6) ◽  
pp. 1155-1164 ◽  
Author(s):  
Amanda M. Murphy ◽  
Anargyros Xenocostas ◽  
Pria Pakkiri ◽  
Ting-Yim Lee

Object The authors investigated the hemodynamic effects of recombinant human erythropoietin (rhEPO) after subarachnoid hemorrhage (SAH) in rabbits. Methods The authors used male New Zealand White rabbits in this study divided into the following groups: SAH plus saline (16 rabbits), SAH plus low-dose rhEPO (16 rabbits; 1500 IU/kg on Day 0 and 500 IU/kg on Days 2 and 4), SAH plus high-dose rhEPO (10 rabbits; 1500 IU/kg on Days 0, 2, 4, and 6), and sham (6 rabbits). Computed tomography perfusion studies and CT angiography were performed for 1 hour after SAH on Day 0, and once each on Days 2, 4, 7, 9, and 16 after SAH. Assessments of neurological function and tissue histology were also performed. Results The mortality rate was significantly lower after rhEPO treatment (12%) than after saline treatment (44%) (p < 0.05). Neurological outcomes in the low-dose and high-dose rhEPO groups were better than in the saline group after SAH (p < 0.05), and the cerebral blood flow in the high-dose rhEPO group was greater than that in the saline group (p < 0.05). The mean transit time was significantly lower on Days 2 and 4 in the low-dose and high-dose rhEPO groups than in the saline group, but increased significantly on Day 7 in both groups (p < 0.05). The hematocrit increased significantly from baseline values in the high-dose and low-dose rhEPO groups on Days 4 and 7, respectively (p < 0.05). Conclusions Treatment with rhEPO after experimental SAH is associated with improved cerebral blood flow and microcirculatory flow as reflected by lower mean transit times. Improved tissue perfusion correlated with reduced mortality and improved neurological outcomes. Further investigation of the impact of increasing hematocrit on hemodynamic changes is needed.


1985 ◽  
Vol 63 (6) ◽  
pp. 937-943 ◽  
Author(s):  
David J. Boarini ◽  
Neal F. Kassell ◽  
James A. Sprowell ◽  
Julie J. Olin ◽  
Hans C. Coester

✓ Profound arterial hypotension is à commonly used adjunct in surgery for aneurysms and arteriovenous malformations. Hyperventilation with hypocapnia is also used in these patients to increase brain slackness. Both measures reduce cerebral blood flow (CBF). Of concern is whether CBF is reduced below ischemic thresholds when both techniques are employed together. To determine this, 12 mongrel dogs were anesthetized with morphine, nitrous oxide, and oxygen, and then paralyzed with pancuronium and hyperventilated. Arterial pCO2 was controlled by adding CO2 to the inspired gas mixture. Cerebral blood flow was measured at arterial pCO2 levels of 40 and 20 mm Hg both before and after mean arterial pressure was lowered to 40 mm Hg with adenosine enhanced by dipyridamole. In animals where PaCO2 was reduced to 20 mm Hg and mean arterial pressure was reduced to 40 mm Hg, cardiac index decreased 42% from control and total brain blood flow decreased 45% from control while the cerebral metabolic rate of oxygen was unchanged. Hypocapnia with hypotension resulted in small but statistically significant reductions in all regional blood flows, most notably in the brain stem. The reported effects of hypocapnia on CBF during arterial hypotension vary depending on the hypotensive agents used. Profound hypotension induced with adenosine does not eliminate CO2 reactivity, nor does it lower blood flow to ischemic levels in this model, even in the presence of severe hypocapnia.


2020 ◽  
pp. 0271678X2096745
Author(s):  
Zhao Liming ◽  
Sun Weiliang ◽  
Jia Jia ◽  
Liang Hao ◽  
Liu Yang ◽  
...  

Our aim was to determine the impact of targeted blood pressure modifications on cerebral blood flow in ischemic moyamoya disease patients assessed by single-photon emission computed tomography (SPECT). From March to September 2018, we prospectively collected data of 154 moyamoya disease patients and selected 40 patients with ischemic moyamoya disease. All patients underwent in-hospital blood pressure monitoring to determine the mean arterial pressure baseline values. The study cohort was subdivided into two subgroups: (1) Group A or relative high blood pressure (RHBP) with an induced mean arterial pressure 10–20% higher than baseline and (2) Group B or relative low blood pressure (RLBP) including patients with mean arterial pressure 10–20% lower than baseline. All patients underwent initial SPECT study on admission-day, and on the following day, every subgroup underwent a second SPECT study under their respective targeted blood pressure values. In general, RHBP patients showed an increment in perfusion of 10.13% (SD 2.94%), whereas RLBP patients showed a reduction of perfusion of 12.19% (SD 2.68%). Cerebral blood flow of moyamoya disease patients is susceptible to small blood pressure changes, and cerebral autoregulation might be affected due to short dynamic blood pressure modifications.


1999 ◽  
Vol 91 (5) ◽  
pp. 1387-1387 ◽  
Author(s):  
Hulya Sungurtekin ◽  
Walter Plöchl ◽  
David J. Cook

Background Cerebral embolization is a primary cause of cardiac surgical neurologic morbidity. During cardiopulmonary bypass (CPB), there are well-defined periods of embolic risk. In theory, cerebral embolization might be reduced by an increase in pump flow during these periods. The purpose of this study was to determine the CPB flow-embolization relation in a canine model. Methods Twenty mongrel dogs underwent CPB at 35 degrees C with alpha-stat management and a fentanyl-midazolam anesthetic. In each animal, CPB flow was adjusted to achieve a mean arterial pressure of 65-75 mmHg. During CPB, an embolic load of 1.2 x 10(5) 67 microm fluorescent microspheres was injected into the arterial inflow line. Before and after embolization, cerebral blood flow was determined using 15-microm microspheres. Tissue was taken from 12 brain regions and microspheres were recovered. The relation between pump flow and embolization/g of brain was determined. Results The mean arterial pressure at embolization was 67 +/-4 mmHg, and the range of pump flow was 0.9-3.5 l x min(-1)x m(-2). Cerebral blood flow was independent of pump flow. At lower pump flow, the percentage of that flow delivered to the brain increased. There was a strong inverse relation between pump flow and cerebral embolization (r = -0.708, P &lt; 0.000 by Spearman rank order correlation). Conclusions Cerebral embolization is determined by the CPB flow. At an unchanged mean arterial pressure, as pump flow is reduced, a progressively greater proportion of that flow is delivered to the brain.


1986 ◽  
Vol 70 (2) ◽  
pp. 177-184 ◽  
Author(s):  
H. C. R. Simpson ◽  
J. E. Zubillaga ◽  
J. G. Collier ◽  
E. D. Bennett ◽  
V. T. Y. Ang ◽  
...  

1. Ten healthy volunteers received intravenous infusions of arginine vasopressin (AVP) at 0.1 m-unit min−1 kg−1 and 5% d-glucose on separate days. AVP caused a small fall in forearm blood flow and small rises in mean arterial pressure and systemic vascular resistance. Cardiac output was unaffected. 2. When subjects were tilted to 50° the fall in forearm blood flow was much greater, mean fall being 44.8% with AVP compared with 18.2% with d-glucose. Cardiac output also fell significantly more with AVP, and diastolic pressure, mean arterial pressure and systemic vascular resistance rose significantly more on tilting during AVP infusion than with d-glucose. 3. Six of the same volunteers were given sequential infusions of ‘low dose’ (0.0125 m-unit min−1 kg−1) and ‘high dose’ (0.3 m-unit min−1 kg−1) AVP on a third occasion. Tilting still produced a mean fall in forearm blood flow of 41.2% during low dose infusion, despite a mean plasma AVP level of only 1.9 pg/ml, which is well within the physiological range. When the AVP concentration was increased 24-fold to the high dose, forearm blood flow fell only a further 8.8%. The low dose infusion was also associated with a marked fall in cardiac output on tilting and a rise in systemic vascular resistance. 4. We conclude that AVP has profound haemodynamic effects in man at physiological concentrations. Although these effects are modest in the supine position, they become marked on tilting, suggesting a possible role for AVP in the postural control of blood pressure.


1993 ◽  
Vol 264 (4) ◽  
pp. H1069-H1075 ◽  
Author(s):  
F. E. Sieber ◽  
P. R. Brown ◽  
Y. Wu ◽  
R. C. Koehler ◽  
R. J. Traystman

The effect of diabetes mellitus on the cerebrovascular response to CO2 is unclear. We examined the effects of diabetes on cerebral blood flow (CBF) and cerebral oxygen uptake (CMRO2) during CO2 alterations. Four groups of dogs were studied: nondiabetic, normoglycemic controls; non-diabetic acute hyperglycemia; diabetic (pancreatectomy) with high-dose insulin treatment to maintain blood glucose between 4.0 and 6.0 mM; and diabetic with low-dose insulin treatment to maintain blood glucose at 13.2 +/- 0.4 mM. Six weeks after either sham surgery or pancreatectomy, dogs were anesthetized with fentanyl (50 micrograms/kg) plus pentobarbital (10 mg/kg), and microsphere determinations of CBF were made during normo-, hypo-, and hypercapnia. On the day of the study, arterial glucose levels in the control, acute hyperglycemia, and high- and low-dose insulin diabetic groups were 4.0 +/- 0.3, 14.9 +/- 2.5, 3.3 +/- 0.8, and 13.3 +/- 0.7 mM, respectively, at control. The corresponding baseline CMRO2 levels were 2.8 +/- 0.2, 3.0 +/- 0.2, 4.1 +/- 0.4, and 4.0 +/- 0.3 ml O2.100 g-1 x min,1, and the values in both diabetic groups were higher than control. Normocapnic CBF in the acute hyperglycemia, high-dose insulin, and low-dose insulin groups was elevated from control (54 +/- 3, 50 +/- 3, 51 +/- 3 vs. 36 +/- 1 ml x 100 g-1 x min-1) and cerebrovascular resistance was lower (2.24 +/- 0.15, 2.51 +/- 0.14, 2.38 +/- 0.21 vs. 3.35 +/- 0.18 mmHg.ml-1 x 100 g.min). CBF responses to both hypercapnia and hypocapnia were similar among groups. Thus both acute hyperglycemia and diabetes decrease cerebrovascular resistance and increase CBF.(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 25 (7) ◽  
pp. 928-936 ◽  
Author(s):  
Bankole A Johnson ◽  
Michael A Dawes ◽  
John D Roache ◽  
Lynda T Wells ◽  
Nassima Ait-Daoud ◽  
...  

Cocaine-induced hypoperfusion, a risk factor for ischemic stroke, has not been fully characterized during experimental drug-taking among individuals with cocaine use disorder. We sought to examine cocaine's dose-dependent, time-related effects on cerebral blood flow. In a double-blind, randomized human laboratory study with a counterbalanced order of drug administration, 31 male and female subjects with cocaine use disorder were divided into two groups receiving either (a) low-dose cocaine (0.325 mg/kg intravenously) or placebo ( N = 15) or (b) high-dose cocaine (0.650 mg/kg intravenously) or placebo ( N = 16). The different dose conditions were administered on test days separated by a rest period of ≥48 h. Cerebral blood flow was assessed quantitatively using H2O15 positron emission tomography. Experimentally administered low- and high-dose cocaine conditions versus their corresponding placebo conditions were associated with global and regional hypoperfusion. The trend for high- versus low-dose cocaine to be associated with greater hypoperfusion achieved statistical significance only for the dopamine-rich sublobar and midbrain regions. Cocaine's hypoperfusion effects were maximal at 8 mins after infusion (i.e., at about the expected peak of intravenous cocaine levels) and had mostly dissipated by 32 mins after infusion. Although hypoperfusion occurred throughout the brain, the left hemispheric dopamine-rich sublobar region was the most severely affected. Cocaine-induced cerebral hypoperfusion is associated with the time course of its pharmacological effects, and dopamine-rich areas, particularly in the left hemisphere, may be most vulnerable. Increasingly larger doses of cocaine may be associated with greater risk for ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document