Evidence of low- and high-frequency oscillations in human AV interval variability: evaluation with spectral analysis

1994 ◽  
Vol 267 (4) ◽  
pp. H1410-H1418 ◽  
Author(s):  
G. Nollo ◽  
M. Del Greco ◽  
F. Ravelli ◽  
M. Disertori

The spontaneous beat-to-beat variation of atrioventricular (AV) interval was analyzed in time and frequency domains and compared with atrial cycle length (A-A) variability. The analysis was applied in humans at rest and tilt position during sinus rhythm and atrial pacing. The AV intervals showed spontaneous oscillations of small amplitude with a relative standard deviation of 1.8%. Spectral analysis of AV interval series showed the existence of two main oscillatory components at low frequency (LF; 0.04-0.13 Hz) and at high frequency (HF; 0.17-0.4 Hz), synchronous with those of A-A interval series. The same LF and HF fluctuations were found in AV interval variability during atrial pacing. Tilt maneuver inducing a sympathetic stimulation and vagal withdrawal increased LF power and decreased HF power of A-A interval spectra (P < 0.05). On the contrary, tilt decreased the LF (46%, P < 0.05) and HF power (29%, P = NS) of AV conduction spectra. In parallel, tilt decreased (P < 0.0001) the mean A-A interval, leaving the mean AV interval unchanged. When heart rate was held constant by atrial pacing, tilt reduced the mean AV interval, the LF power (65%, P < 0.05), and HF power (10%, P = NS). These results indicate a direct influence of the autonomic nervous system on the LF and HF oscillations of AV conduction. The decrease of AV interval oscillations during tilt demonstrates a marked reduction of autonomic modulation of AV conduction mainly attributable to parasympathetic withdrawal.

1975 ◽  
Vol 30 (10) ◽  
pp. 1271-1278
Author(s):  
W. R. Rutgers

Abstract From the combined Stark-Zeeman pattern of helium allowed and forbidden optical lines the frequency spectrum, the field strength and the dominant polarization of microfields were determined in a turbulent plasma. Two frequency domains of oscillations were found in a turbulent heating experiment: low-frequency oscillations with dominant polarization perpendicular to the current direction and high-frequency oscillations (f~fpe) with random polarization. The r.m.s. field strength of the oscillations is between 2 kV/cm and 10 kV/cm. The energy density of turbulent microfields amounts to 1‰ of the thermal energy density.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 699
Author(s):  
Rashmi Supriya ◽  
Fei-Fei Li ◽  
Yi-De Yang ◽  
Wei Liang ◽  
Julien S. Baker

Background: the clustering of metabolic syndrome (MetS) risk factors is becoming more prevalent in children, leading to the development of type 2 diabetes (T2D) and cardiovascular diseases in early adulthood. The impact of MetS risk factors on cardiac autonomic modulation (CAM) or vice versa has been noted to track from childhood to pre-adolescence and adolescence. Understating associations in this age group may help to improve the clinical outcomes of the MetS, even when MetS symptoms are not visible. Potential damage from each individual MetS component and the ability to predict early cardiac damage or upcoming cardiovascular events is very important. Therefore, the present systematic review and meta-analysis investigated the associations between CAM and MetS risk factors individually to verify which of the MetS risk components were significantly correlated with heart rate variability (HRV) indices before or at the onset of the MetS among young people. The purpose of this review was to outline the importance of potentially screening HRV indices in young people even with only one MetS risk factor, as a pre-indicator for early cardiovascular risk stratification. Methods: cross-sectional studies that examined the relationship of MetS risk factors with HRV indices were searched using four databases including PubMed, the Cochrane clinical trials library, Medline and the Web of Science. Correlation coefficients with 95% confidence intervals (95% CI), and random effects meta-analyses of the association between MetS risk factors with HRV indices were performed. Results: out of 14 cross-sectional studies and one case-control study, 8 studies (10 data sets) provided association data for the meta-analysis. Our results indicated significant positive correlations for systolic blood pressure (SBP) (correlation coefficient 0.13 (95%CI: 0.06; 0.19), I2 = 47.26%) and diastolic blood pressure (DBP) (correlation coefficient 0.09 (95%CI: −0.01; 0.18), I2 = 0%) with a Low Frequency/High Frequency ratio (LF/HF). Significant negative correlations for waist circumference (WC) (correlation coefficient −0.12 (95%CI: −0.19; −0.04), I2 = 51.50%), Triglycerides (TGs) (correlation coefficient −0.09 (95%CI: −0.15; −0.02), I2 = 0%) and ≥2 MetS risk factors (correlation coefficient −0.10 (95%CI: −0.16; −0.03), I2 = 0%); with high frequency (HF) were revealed. Significant positive correlations for high density lipoprotein (HDL) (correlation coefficient 0.08 (95%CI: 0.05; 0.11), I2 = 0%) and significant negative correlations of ≥2 MetS risk (correlation coefficient −0.04 (95%CI: −0.12; 0.03), I2 = 0.0%) with low frequency (LF) were revealed. Significant negative correlations for TGs (correlation coefficient −0.09 (95%CI: −0.23; 0.05), I2 = 2.01%) with a mean square root of the sum of differences between mean time between two successive intervals (rMSSD) and significant positive correlation of HDL (correlation coefficient 0.09 (95%CI: −0.01; 0.19), I2 = 0.33%) with standard deviation of the time between two successive intervals (SDNN) were also revealed. An Egger’s test indicated that there was no obvious publication bias for any of the above relationships except for TGs and rMSSD. The significance level stipulated for the meta-analysis was p < 0.05. Conclusions: lipid profiles (HDL and TGs), WC and BP were associated with CAM in young people up to the age of 19 years. The use of HRV indices to predict future MetS risk, and relationships with individual risk factors including HDL, BP, WC and TGs, were established. Future studies related to young people (up to the age of 19 years) are recommended to explore the associations reported here further.


1985 ◽  
Vol 58 (3) ◽  
pp. 830-833 ◽  
Author(s):  
S. T. Nugent ◽  
J. P. Finley

Periodic breathing occurs commonly in full-term and preterm infants. The mechanisms which switch breathing on and off within a cycle of periodic breathing are not certain. Since immature infants may experience diaphragmatic muscle fatigue, one potential switching mechanism is fatigue. Power spectra of the electromyogram, uncontaminated by the electrocardiograph artifact, were studied for evidence of diaphragmatic muscle fatigue during spontaneous periodic breathing in infants. A fall in the high-frequency (103–600 Hz) power and an increase in the low-frequency (23–47 Hz) power during periodic as compared with normal breathing would indicate fatigue. This effect was not observed in any of the infants studied. Hence, there is no evidence that periodic breathing is the result of diaphragmatic muscle fatigue. This finding suggests that the effect of drugs such as theophylline in eliminating periodic breathing may be unrelated to the fact that they also reduce fatigue.


2006 ◽  
Vol 65 (02) ◽  
pp. 264-274 ◽  
Author(s):  
Lora R. Stevens ◽  
Jeffery R. Stone ◽  
Josh Campbell ◽  
Sherilyn C. Fritz

AbstractA 2200-yr long, high-resolution (∼5 yr) record of drought variability in northwest Montana is inferred from diatoms and δ18O values of bio-induced carbonate preserved in a varved lacustrine core from Foy Lake. A previously developed model of the diatom response to lake-level fluctuations is used to constrain estimates of paleolake levels derived from the diatom data. High-frequency (decadal) fluctuations in the de-trended δ18O record mirror variations in wet/dry cycles inferred from Banff tree-rings, demonstrating the sensitivity of the oxygen-isotope values to changes in regional moisture balance. Low frequency (multi-centennial) isotopic changes may be associated with shifts in the seasonal distribution of precipitation. From 200 B.C. to A.D. 800, both diatom and isotope records indicate that climate was dry and lake level low, with poor diatom preservation and high organic carbon: nitrogen ratios. Subsequently, lake level rose slightly, although the climate was drier and more stable than modern conditions. At A.D. 1200, lake level increased to approximately 6 m below present elevation, after which the lake fluctuated between this elevation and full stage, with particularly cool and/or wetter conditions after 1700. The hydrologic balance of the lake shifted abruptly at 1894 because of the establishment of a lumber mill at the lake's outlet. Spectral analysis of the δ18O data indicates that severe droughts occurred with multi-decadal (50 to 70 yr) frequency.


Circulation ◽  
2014 ◽  
Vol 129 (suppl_1) ◽  
Author(s):  
Sol M Rodriguez-Colon ◽  
Fan He ◽  
Edward O Bixler ◽  
Julio Fernandez-Mendoza ◽  
Susan Calhoun ◽  
...  

Objective: To examine the circadian pattern of cardiac autonomic modulation (CAM) and its correlates in a population-based sample of adolescents. Methods: We used the data from 400 adolescents who completed the follow up exam in the PSCC study. CAM was assessed by heart rate variability (HRV) analysis of beat-to-beat normal R-R intervals from a 24-hour (7:00 PM to 7:00 PM) ECG, on a 30-minute basis (48 segments/person). The HRV indices included frequency domain: [high and low frequency powers (HF, LF), and LF/HF ratio] and time domain: [standard deviation of normal RRs (SDNN), and the square root of the mean squared difference of successive normal RRs (RMSSD), and heart rate (HR)]. We used a cosine periodic model to estimate each participant’s circadian parameters: mean (M), amplitude (Â), and crescent time (θ). We then used mixed-effects models to calculate group level circadian pattern as the overall M, Â of the oscillation, and θ of the highest oscillation. Results: The mean age was 16.9 yrs (SD=2.2), with 54% male and 77% white. The mean BMI percentile is 61, with 16% were obese (BMI percentile ≥ 95). Overall, the parasympathetic modulation gradually increases from late afternoon throughout the evening, and reaches the peak amplitude around 3:00 AM, at which it gradually decrease throughout most of the daytime until late afternoon. The age, sex and race showed varying differences on the CAM circadian parameters. In contrast, obesity in adolescents had adverse effects on all three circadian parameters. Using HF (a reliable index of parasympathetic modulation) as an example, the circadian pattern of the entire sample, and stratified by obesity are shown in Figure 1. Conclusion: Circadian pattern of CAM can be quantified by three cosine parameters (M, Â, and θ). Obesity in adolescents is already associated with a CAM profile indicative of sympathetic overflow and reduced parasympathetic modulation, at all levels of the CAM circadian rhythm.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Smruti R. Panigrahi ◽  
Brian F. Feeny ◽  
Alejandro R. Diaz

This work regards the use of cubic springs with intervals of negative stiffness, in other words, “snap-through” elements, in order to convert low-frequency ambient vibrations into high-frequency oscillations, referred to as “twinkling.” The focus of this paper is on the bifurcation of a two-mass chain that, in the symmetric system, involves infinitely many equilibria at the bifurcation point. The structure of this “eclipse bifurcation” is uncovered, and perturbations of the bifurcation are studied. The energies associated with the equilibria are examined.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Goktug C. Ozmen ◽  
Mohsen Safaei ◽  
Lan Lan ◽  
Omer T. Inan

Abstract In this study, we propose a new mounting method to improve accelerometer sensing performance in the 50 Hz–10 kHz frequency band for knee sound measurement. The proposed method includes a thin double-sided adhesive tape for mounting and a 3D-printed custom-designed backing prototype. In our mechanical setup with an electrodynamic shaker, the measurements showed a 13 dB increase in the accelerometer's sensing performance in the 1–10 kHz frequency band when it is mounted with the craft tape under 2 N backing force applied through low-friction tape. As a proof-of-concept study, knee sounds of healthy subjects (n = 10) were recorded. When the backing force was applied, we observed statistically significant (p &lt; 0.01) incremental changes in spectral centroid, spectral roll-off frequencies, and high-frequency (1–10 kHz) root-mean-square (RMS) acceleration, while low-frequency (50 Hz–1 kHz) RMS acceleration remained unchanged. The mean spectral centroid and spectral roll-off frequencies increased from 0.8 kHz and 4.15 kHz to 1.35 kHz and 5.9 kHz, respectively. The mean high-frequency acceleration increased from 0.45 mgRMS to 0.9 mgRMS with backing. We showed that the backing force improves the sensing performance of the accelerometer when mounted with the craft tape and the proposed backing prototype. This new method has the potential to be implemented in today's wearable systems to improve the sensing performance of accelerometers in knee sound measurements.


Author(s):  
Smruti R. Panigrahi ◽  
Brian F. Feeny ◽  
Alejandro R. Diaz

This work regards the use of cubic springs with intervals of negative stiffness, in other words “snap-through” elements, in order to convert low-frequency ambient vibrations into high-frequency oscillations, referred to as “twinkling”. The focus of this paper is on a global bifurcation of a two-mass chain which, in the symmetric system, involves infinitely many equilibria at the bifurcation point. The structure of this “eclipse” bifurcation is uncovered, and perturbations of the bifurcation are studied. The energies associated with the equilibria are examined.


Sign in / Sign up

Export Citation Format

Share Document