Exercise training alters aortic vascular reactivity in hypothyroid rats

1995 ◽  
Vol 268 (4) ◽  
pp. H1428-H1435 ◽  
Author(s):  
M. D. Delp ◽  
R. M. McAllister ◽  
M. H. Laughlin

Hypothyroidism induces a number of cardiovascular adaptations in rats, including decreases in blood flow to high-oxidative skeletal muscle and increases in total peripheral resistance. Conversely, exercise training results in elevations in blood flow to high-oxidative skeletal muscle and decreases in vascular resistance. The purpose of this study was to determine whether hypothyroidism induces changes in the vasomotor responses of arterial vessels and whether exercise training modifies these responses. Rats were divided into three groups, sedentary euthyroid (S-Eut), sedentary hypothyroid (S-Hypo), and exercise-trained hypothyroid (ET-Hypo). Responses to vasoactive compounds were examined in vitro using abdominal aortic rings. Maximal isometric contractile tension (g/mm2) evoked by KCl and norepinephrine (NE) were not different among groups. However, sensitivity to KCl [agonist concentration producing 50% of maximal vasoconstrictor response (EC50; in mM): S-Eut, 21.1 +/- 1.1; S-Hypo, 35.7 +/- 2.7; ET-Hypo, 43.8 +/- 2.0] and to NE [EC50 (in M): S-Eut, 4.0 x 10(-8) +/- 2.3 x 10(-8); S-Hypo, 8.3 x 10(-8) +/- 3.4 x 10(-8); ET-Hypo, 3.6 x 10(-7) +/- 1.1 x 10(-7)] was different among groups, and in the order S-Eut > S-Hypo > ET-Hypo. Maximal vasodilator responses induced by acetylcholine (10(-7) M NE preconstriction) were lower in rings from S-Hypo animals than those from S-Eut and ET-Hypo rats. Dilatory responses induced by sodium nitroprusside (SNP) with the same NE preconstriction were not different among groups. However, with a 10(-4) M NE preconstriction, maximal dilatory responses induced by SNP were lower in vessels from hypothyroid animals. Dilatory responses to forskolin (10(-4) M NE preconstriction) were not different among groups.(ABSTRACT TRUNCATED AT 250 WORDS)

2011 ◽  
Vol 110 (3) ◽  
pp. 695-704 ◽  
Author(s):  
Danielle J. McCullough ◽  
Robert T. Davis ◽  
James M. Dominguez ◽  
John N. Stabley ◽  
Christian S. Bruells ◽  
...  

With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O2 delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O2 delivery to O2 uptake, evidenced through improved microvascular Po2 (PmO2), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ∼6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify PmO2 in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline PmO2 (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting PmO2 and the time-delay before PmO2 fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the PmO2 in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle.


2001 ◽  
Vol 90 (1) ◽  
pp. 216-227 ◽  
Author(s):  
M. Harold Laughlin ◽  
William G. Schrage ◽  
Richard M. McAllister ◽  
H. A. Garverick ◽  
A. W. Jones

The purpose of the present study was to test the hypothesis that gender influences exercise training-induced adaptations of vascular reactivity of porcine arteries that provide blood flow to skeletal muscle and femoral and brachial arteries. Male and female Yucatan miniature swine were exercise trained on a motor-driven treadmill or cage confined for 16–20 wk. Contractile responses of arterial rings were evaluated in vitro by determining concentration-response curves for endothelin-1 (ET-1; 10−10 to 10−7 M) and norepinephrine (NE; 10−10 to 10−4 M). Relaxation responses of arteries precontracted with 30 μM PGF2αwere examined for endothelium-dependent agents [bradykinin (BK; 10−11 to 10−6 M), ACh (10−10 to 10−4 M), and a Ca2+ ionophore, A-23187 (10−6 M)] and a endothelium-independent agent [sodium nitroprusside (10−10 to 10−4 M)]. Arteries from female pigs developed greater contractile force in response to ET-1 than arteries from male pigs, whereas contractile responses to NE and KCl were similar in arteries from both genders. Femoral arteries from females exhibited greater endothelium-mediated vasorelaxation (BK and ACh) than did those from males. In contrast, brachial arteries of males were more responsive to BK and ACh than brachial arteries of females. Exercise training increased ET-1-induced contractions in arteries from males (without endothelium) but not in arteries from females. Training had no effect on endothelium-dependent relaxation in arteries from males but increased relaxation responses in brachial arteries from females. We conclude that both gender and anatomic origin of the artery influence exercise training-induced adaptations of vascular reactivity of porcine skeletal muscle conduit arteries.


Hypertension ◽  
1996 ◽  
Vol 28 (3) ◽  
pp. 361-366 ◽  
Author(s):  
Daniel Henrion ◽  
Fiona J. Dowell ◽  
Bernard I. Levy ◽  
Jean-Baptiste Michel

1997 ◽  
Vol 273 (3) ◽  
pp. R1126-R1131 ◽  
Author(s):  
Y. X. Wang ◽  
J. T. Crofton ◽  
S. L. Bealer ◽  
L. Share

The greater pressor response to vasopressin in male than in nonestrous female rats results from a greater increase in total peripheral resistance in males. The present study was performed to identify the vascular beds that contribute to this difference. Mean arterial blood pressure (MABP) and changes in blood flow in the mesenteric and renal arteries and terminal aorta were measured in conscious male and nonestrous female rats 3 h after surgery. Graded intravenous infusions of vasopressin induced greater increases in MABP and mesenteric vascular resistance and a greater decrease in mesenteric blood flow in males. Vasopressin also increased renal vascular resistance to a greater extent in males. Because renal blood flow remained unchanged, this difference may be due to autoregulation. The vasopressin-induced reduction in blood flow and increased resistance in the hindquarters were moderate and did not differ between sexes. Thus the greater vasoconstrictor response to vasopressin in the mesenteric vascular bed of male than nonestrous females contributed importantly to the sexually dimorphic pressor response to vasopressin in these experiments.


2020 ◽  
Author(s):  
Ada Admin ◽  
Solvejg L. Hansen ◽  
Kirstine N. Bojsen-Møller ◽  
Anne-Marie Lundsgaard ◽  
Frederikke L. Hendrich ◽  
...  

Women with polycystic ovary syndrome (PCOS) have been shown to be less insulin sensitive compared with control women, independent of BMI. Training is associated with molecular adaptations in skeletal muscle improving glucose uptake and metabolism in both healthy and type 2 diabetic individuals. In the present study, lean, hyperandrogenic women with PCOS (n=9) and healthy controls (CON, n=9) completed 14 weeks of controlled and supervised exercise training. In CON, the training intervention increased whole body insulin action by 26% and insulin-stimulated leg glucose uptake by 53%, together with increased insulin-stimulated leg blood flow and a more oxidative muscle fiber type distribution. In PCOS, no such changes were found, despite similar training intensity and improvements in maximal oxygen uptake. In skeletal muscle of CON, but not PCOS, training increased GLUT4 and HKII mRNA and protein expressions. These data suggest that the impaired increase in whole body insulin action in women with PCOS with training is caused by an impaired ability to upregulate key glucose handling proteins for insulin-stimulated glucose uptake in skeletal muscle, and insulin-stimulated leg blood flow. Still, other important benefits of exercise training appeared in women with PCOS, including an improvement of the hyperandrogenic state.


1999 ◽  
Vol 58 (4) ◽  
pp. 919-923 ◽  
Author(s):  
Jan Henriksson

Techniques in human skeletal muscle research are by necessity predominantly 'descriptive'.Microdialysis has raised high expectations that it could meet the demand for a method that allows 'mechanistic' investigations to be performed in human skeletal muscle. In the present review, some views are given on how well the initial expectations on the use of the microdialysis technique in skeletal muscle have been fulfilled, and the areas in which additional work is needed in order to validate microdialysis as an important metabolic technique in this tissue. The microdialysis catheter has been equated to an artificial blood vessel, which is introduced into the tissue. By means of this 'vessel' the concentrations of compounds in the interstitial space can be monitored. The concentration of substances in the collected samples is dependent on the rate of perfusate flow. When perfusate flow is slow enough to allow complete equilibration between interstitial and perfusate fluids, the concentration in the perfusate is maximal and identical to the interstitial concentration. Microdialysis data may be influenced by changes in blood flow, especially in instances where the tissue diffusivity limits the recovery in vivo, i.e. when recovery in vitro is 100 %, whereas the recovery in vivo is less than 100 %. Microdialysis data indicate that a significant arterial-interstitial glucose concentration gradient exists in skeletal muscle but not in adipose tissue at rest. While the concentrations of glucose and lactate in the dialysate from skeletal muscle are close to the expected values, the glycerol values obtained for muscle are still puzzling. Ethanol added to the perfusate will be cleared by the tissue at a rate that is determined by the nutritive blood flow (the microdialysis ethanol technique). It is concluded that microdialysis of skeletal muscle has become an important technique for mechanistic studies in human metabolism and nutrition.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 186 ◽  
Author(s):  
Jiawei Zheng ◽  
Wujian Liu ◽  
Xiaohui Zhu ◽  
Li Ran ◽  
Hedong Lang ◽  
...  

It has been demonstrated that skeletal muscle adaptions, including muscle fibers transition, angiogenesis, and mitochondrial biogenesis are involved in the regular exercise-induced improvement of endurance capacity and metabolic status. Herein, we investigated the effects of pterostilbene (PST) supplementation on skeletal muscle adaptations to exercise training in rats. Six-week-old male Sprague Dawley rats were randomly divided into a sedentary control group (Sed), an exercise training group (Ex), and exercise training combined with 50 mg/kg PST (Ex + PST) treatment group. After 4 weeks of intervention, an exhaustive running test was performed, and muscle fiber type transformation, angiogenesis, and mitochondrial content in the soleus muscle were measured. Additionally, the effects of PST on muscle fiber transformation, paracrine regulation of angiogenesis, and mitochondrial function were tested in vitro using C2C12 myotubes. In vivo study showed that exercise training resulted in significant increases in time-to-exhaustion, the proportion of slow-twitch fibers, muscular angiogenesis, and mitochondrial biogenesis in rats, and these effects induced by exercise training could be augmented by PST supplementation. Moreover, the in vitro study showed that PST treatment remarkably promoted slow-twitch fibers formation, angiogenic factor expression, and mitochondrial function in C2C12 myotubes. Collectively, our results suggest that PST promotes skeletal muscle adaptations to exercise training thereby enhancing the endurance capacity.


2007 ◽  
Vol 292 (6) ◽  
pp. E1616-E1623 ◽  
Author(s):  
En Yin Lai ◽  
A. Erik G. Persson ◽  
Birgitta Bodin ◽  
Örjan Källskog ◽  
Arne Andersson ◽  
...  

Endothelin-1 (ET-1) is a potent endothelium-derived vasoconstrictor, which also stimulates insulin release. The aim of the present study was to evaluate whether exogenously administered ET-1 affected pancreatic islet blood flow in vivo in rats and the islet arteriolar reactivity in vitro in mice. Furthermore, we aimed to determine the ET-receptor subtype that was involved in such responses. When applying a microsphere technique for measurements of islet blood perfusion in vivo, we found that ET-1 (5 nmol/kg) consistently and markedly decreased total pancreatic and especially islet blood flow, despite having only minor effects on blood pressure. Neither endothelin A (ETA) receptor (BQ-123) nor endothelin-B (ETB) receptor (BQ-788) antagonists, alone or in combination, could prevent this reduction in blood flow. To avoid confounding interactions in vivo, we also examined the arteriolar vascular reactivity in isolated, perfused mouse islets. In the latter preparation, we demonstrated a dose-dependent constriction in response to ET-1. Administration of BQ-123 prevented this, whereas BQ-788 induced a right shift in the response. In conclusion, the pancreatic islet vasculature is highly sensitive to exogenous ET-1, which mediates its effect mainly through ETA receptors.


1995 ◽  
Vol 268 (5) ◽  
pp. H2068-H2076 ◽  
Author(s):  
J. Tateishi ◽  
J. E. Faber

We have found that hypoxia and acidosis inhibit constriction by alpha 2D-adrenoceptors but not by alpha 1D-adrenoceptors on arterioles of rat skeletal muscle, facilitating local metabolic control of blood flow. When activated by full agonists like norepinephrine, this alpha 2D-constriction relies on Ca2+ influx through dihydropyridine-sensitive, voltage-operated Ca2+ channels (VOC), while alpha 1D-constriction does not. The purpose of the present study was to examine the dose sensitivity of this selective metabolic inhibition of alpha 2D-constriction and determine whether inhibition of VOCs is involved. Changes in lumen diameter of microcannulated arterioles isolated from rat skeletal muscle (107 +/- 3 microns control diam) were measured by videomicroscopy for bath-added agents. Decreases in pH (7.4-7.0) or PO2 (70 to 10 mmHg) caused graded inhibition of alpha 2D-adrenoceptor constriction (UK-14304 plus prazosin); the half-maximum inhibitory concentration for acidosis was 7.1 and for PO2 was 24 mmHg. alpha 1D-Adrenoceptor constriction by the respective full and partial alpha 1-agonists, phenylephrine (PE) and St-587 (both plus rauwolscine), was unaffected. Because St-587 but not PE constriction was dependent on VOC activation, the sensitivity of alpha 2D- but not alpha 1D-constriction to acidosis and hypoxia appeared to be independent of reliance on VOCs. This was examined directly; contractile sensitivity to KCl and the VOC agonist, SDZ-202-791, was unaffected by pH 7.0 or PO2 10 mmHg. These data suggest that alpha 2D-constriction is sensitive to inhibition by hypoxia and acidosis through a mechanism that does not involve direct blockade of dihydropyridine-sensitive Ca2+ channels.


Sign in / Sign up

Export Citation Format

Share Document