1,25(OH)2D3 modulates intracellular Ca2+ and force generation in resistance arteries

1996 ◽  
Vol 270 (1) ◽  
pp. H230-H237 ◽  
Author(s):  
K. Bian ◽  
K. Ishibashi ◽  
R. D. Bukoski

The mechanism by which 1 alpha,25-dihydroxycholecalciferol [1,25(OH)2D3] enhances smooth muscle force generation was examined. Rats were injected on three mornings with 1,25(OH)2D3 (35 ng/100 g) or vehicle, and on the fourth morning mesenteric resistance arteries were isolated and used for simultaneous measurement of intracellular Ca2+ and force or myosin light chain phosphorylation. 1,25(OH)2D3 did not affect media thickness or wall-to-lumen ratio, but it increased basal intracellular Ca2+ (vehicle = 49.2 +/- 2.2 nM vs. 1,25(OH)2D3 = 65.9 +/- 4.0 nM, P < 0.05, n = 24-26 rats). 1,25(OH)2D3 enhanced the active stress and intracellular Ca2+ responses to increasing doses of norepinephrine, and the increases were normalized by verapamil (10 microM). In a second group of animals, 1,25(OH)2D3 significantly increased both basal intracellular Ca2+ and light chain phosphorylation and the active stress and Ca2+ mobilization responses to norepinephrine (10 microM). The hormone did not affect peak or steady-state light chain phosphorylation. Myofilament Ca2+ sensitivity, determined during stimulation with 2 microM norepinephrine, was depressed in vessels isolated from rats treated with 1,25(OH)2D3 [vehicle Ca2+ 50% effective dose (ED50) = 82.7 +/- 3.8 nM vs. 1,25(OH)2D3 = 104.8 +/- 4.9 nM, P = 0.002]. We conclude that 1,25(OH)2D3 enhances resistance artery force generation by altering smooth muscle Ca2+ homeostasis, with effects on basal and verapamil-sensitive, agonist-induced Ca2+ mobilization.

1995 ◽  
Vol 269 (1) ◽  
pp. H230-H238 ◽  
Author(s):  
K. Bian ◽  
R. D. Bukoski

We tested the hypothesis that increasing extracellular Ca2+ (Cao) over a physiological concentration range depresses vascular smooth muscle force generation by altering the intracellular Ca2+ (Cai)-force relationship. Mesenteric resistance arteries were isolated from Wistar rats; Cai and isometric force were measured using a fura-based method and wire myography. Vessels were depleted of releasable Cai by repeated contraction with norepinephrine; Cao was then cumulatively added back from 0.025-2.5 mM in the presence of an agonist. With norepinephrine, serotonin, prostaglandin F2 alpha, and K+, Cao from 0.025 to 0.8 mM induced a graded increase in Cai and active stress. With the receptor agonists but not K+ raising Cao from 0.8 to 1.6 mM and from 1.6 to 2.5 mM decreased active stress to 82 +/- 6 and 54 +/- 6% of maximum, respectively, P < 0.05. Although there was a transient decrease in Cai in response to both 1.6 and 2.5 mM Cao, steady-state Cai only decreased significantly in response to 2.5 mM Cao (85 +/- 3% of maximum). Inhibition of the sarcoplasmic reticulum Ca(2+)-adenosinetriphosphatase with 1 microM thapsigargin had no effect on the decrease in force induced by high Ca2+. The decrease in active stress induced by 1.6 and 2.5 mM Cao was inhibited by Ca2+ channel antagonists and by blockade of Ca(2+)-activated K+ channels with charybdotoxin (with 1.6 mM Cao, control tension = 67 +/- 10% of maximum vs. charybdotoxin = 99.2 +/- 1%, P < 0.05; n = 9).(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 266 (3) ◽  
pp. G469-G474 ◽  
Author(s):  
R. J. Washabau ◽  
M. B. Wang ◽  
C. Dorst ◽  
J. P. Ryan

In acetylcholine (ACh)-stimulated gallbladder smooth muscle, we have previously shown that phosphorylation of the 20,000-Da myosin light chains is necessary for the initiation of contraction, that myosin is stably phosphorylated at steady state, and that dephosphorylation of cross bridges is not necessary for the slowing of cross-bridge cycling rates during the period of steady-state isometric stress. The present studies were undertaken to determine whether 1) K+ (60 or 80 mM) or cholecystokinin (CCK, 10(-8) M) stimulation is accompanied by changes in myosin light-chain phosphorylation in gallbladder smooth muscle and 2) dephosphorylated noncycling cross bridges exist in K(+)- or CCK-stimulated gallbladder smooth muscle. Isometric stress, isotonic shortening velocity, and myosin light-chain phosphorylation were determined during contraction with K+ or CCK. Steady-state isometric stress was reached within 2.5 min of stimulation with K+ or CCK and was maintained for the duration of the stimulation. Stimulation with K+ or CCK was associated with rapid increases in myosin light-chain phosphorylation and maintenance of myosin light-chain phosphorylation during the stimulation. In contrast, isotonic shortening velocity was maximal at 1 min of stimulation with either K+ or CCK and then declined significantly to values that were only 26-32% of the peak velocity. These data, along with data from previous experiments with ACh, suggest that myosin light-chain phosphorylation is essential in the initiation of contraction in gallbladder smooth muscle, regardless of the source of Ca2+ or of the contractile agonist.(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 315 (2) ◽  
pp. H423-H428
Author(s):  
Philip S. Clifford ◽  
Brian S. Ferguson ◽  
Jeffrey L. Jasperse ◽  
Michael A. Hill

It is generally assumed that relaxation of arteriolar vascular smooth muscle occurs through hyperpolarization of the cell membrane, reduction in intracellular Ca2+ concentration, and activation of myosin light chain phosphatase/inactivation of myosin light chain kinase. We hypothesized that vasodilation is related to depolymerization of F-actin. Cremaster muscles were dissected in rats under pentobarbital sodium anesthesia (50 mg/kg). First-order arterioles were dissected, cannulated on glass micropipettes, pressurized, and warmed to 34°C. Internal diameter was monitored with an electronic video caliper. The concentration of G-actin was determined in flash-frozen intact segments of arterioles by ultracentrifugation and Western blot analyses. Arterioles dilated by ~40% of initial diameter in response to pinacidil (1 × 10−6 mM) and sodium nitroprusside (5 × 10−5 mM). The G-actin-to-smooth muscle 22α ratio was 0.67 ± 0.09 in arterioles with myogenic tone and increased significantly to 1.32 ± 0.34 ( P < 0.01) when arterioles were dilated with pinacidil and 1.14 ± 0.18 ( P < 0.01) with sodium nitroprusside, indicating actin depolymerization. Compared with control vessels (49 ± 5%), the percentage of phosphorylated myosin light chain was significantly reduced by pinacidil (24 ± 2%, P < 0.01) but not sodium nitroprusside (42 ± 4%). These findings suggest that actin depolymerization is an important mechanism for vasodilation of resistance arterioles to external agonists. Furthermore, pinacidil produces smooth muscle relaxation via both decreases in myosin light chain phosphorylation and actin depolymerization, whereas sodium nitroprusside produces smooth muscle relaxation primarily via actin depolymerization. NEW & NOTEWORTHY This article adds to the accumulating evidence on the contribution of the actin cytoskeleton to the regulation of vascular smooth muscle tone in resistance arterioles. Actin depolymerization appears to be an important mechanism for vasodilation of resistance arterioles to pharmacological agonists. Dilation to the K+ channel opener pinacidil is produced by decreases in myosin light chain phosphorylation and actin depolymerization, whereas dilation to the nitric oxide donor sodium nitroprusside occurs primarily via actin depolymerization. Listen to this article’s corresponding podcast at https://ajpheart.podbean.com/e/vascular-smooth-muscle-actin-depolymerization/ .


1998 ◽  
Vol 274 (2) ◽  
pp. G306-G313 ◽  
Author(s):  
Simon A. Ahtaridis ◽  
Surender S. Katoch ◽  
Robert S. Moreland

Intact and α-toxin-permeabilized longitudinal smooth muscle were mounted for measurement of force and myosin light chain phosphorylation. Galanin contracted intact jejunum with a half-maximum effective concentration of 9.2 ± 0.1 nM. Neither atropine, hexamethonium, guanethidine, nor tetrodotoxin affected the contraction. The contraction was also unaffected by depletion of intracellular Ca2+ or by addition of thapsigargin; removal of extracellular Ca2+ or addition of nifedipine abolished the contraction. Galanin increased myosin light chain phosphorylation levels concomitantly with force. During continued tissue stimulation, force fell to suprabasal values, whereas myosin light chain phosphorylation levels remained elevated. Galanin increased Ca2+ sensitivity of contraction in α-toxin-permeabilized tissues, and this was reversed by either guanosine 5′- O-(2-thiodiphosphate) or pertussis toxin. These results suggest that galanin-induced contraction of longitudinal jejunal smooth muscle is dependent on a pertussis toxin-sensitive G protein that is apparently not coupled to the release of intracellular Ca2+but to the influx of extracellular Ca2+ and involves an initial myofilament Ca2+ sensitization followed by Ca2+ desensitization.


1996 ◽  
Vol 271 (4) ◽  
pp. H1348-H1355 ◽  
Author(s):  
N. Jin ◽  
R. A. Siddiqui ◽  
D. English ◽  
R. A. Rhoades

Two separate signal transduction pathways exist in vascular smooth muscle: one for cell growth, proliferation, and differentiation and the other for contraction. Although activation of protein tyrosine kinases is intimately involved in the signaling pathway that induces cell growth, proliferation, and differentiation, activation of myosin light chain kinase (MLCK) is an important step in the pathway leading to smooth muscle contraction. Indirect evidence suggests that “cross talk” exists between these two signaling pathways, but the common intermediates are not well defined. The purpose of this study was to determine whether a vasoconstrictor and a mitogen initiate crossover signaling between the tyrosine kinase pathway and the MLCK pathway in vascular smooth muscle. Rat aorta and pulmonary arteries were isolated and stimulated with either fetal calf serum (FCS) or phenylephrine in the presence or absence of a tyrosine kinase inhibitor (genistein) or tyrosine phosphatase inhibitor [sodium o-vanadate (Na3 VO4)]. Isometric force was recorded as a function of time; myosin light chain phosphorylation, protein tyrosine phosphorylation, and mitogen-activated protein kinase (MAPK) mobility were determined by immunoblotting. The results demonstrate that FCS, which contains a variety of growth factors known to activate tyrosine kinases, induced myosin light chain phosphorylation and contraction in vascular smooth muscle. Phenylephrine, a vasoconstrictor known to activate MLCK, induced tyrosine phosphorylation of a 42-kDa protein identified as MAPK. Tyrosine phosphorylation of this protein was inhibited by genistein and enhanced by vanadate. Genistein significantly inhibited both serum- and phenylephrine-induced myosin light chain phosphorylation as well as the serum- and phenylephrine-induced force generation, whereas vanadate enhanced these responses. These data demonstrate interrelationship between activation of the tyrosine kinase pathway and the MLCK pathway in vascular smooth muscle. These interactions may influence smooth muscle contraction and be important in the regulation of smooth muscle cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document