Characterization and functional consequences of delayed rectifier current transient in ventricular repolarization

2000 ◽  
Vol 278 (3) ◽  
pp. H806-H817 ◽  
Author(s):  
Gary A. Gintant

Although inactivation of the rapidly activating delayed rectifier current ( I Kr) limits outward current on depolarization, the role of I Kr (and recovery from inactivation) during repolarization is uncertain. To characterize I Krduring ventricular repolarization (and compare with the inward rectifier current, I K1), voltage-clamp waveforms simulating the action potential were applied to canine ventricular, atrial, and Purkinje myocytes. In ventricular myocytes, I Kr was minimal at plateau potentials but transiently increased during repolarizing ramps. The I Kr transient was unaffected by repolarization rate and maximal after 150-ms depolarizations (+25 mV). Action potential clamps revealed the I Kr transient terminating the plateau. Although peak I Kr transient density was relatively uniform among myocytes, potentials characterizing the peak transients were widely dispersed. In contrast, peak inward rectifier current ( I K1) density during repolarization was dispersed, whereas potentials characterizing I K1 defined a narrower (more negative) voltage range. In summary, rapidly activating I Kr provides a delayed voltage-dependent (and functionally time-independent) outward transient during ventricular repolarization, consistent with rapid recovery from inactivation. The heterogeneous voltage dependence of I Kr provides a novel means for modulating the contribution of this current during repolarization.

1992 ◽  
Vol 262 (1) ◽  
pp. C75-C83 ◽  
Author(s):  
C. H. Follmer ◽  
N. J. Lodge ◽  
C. A. Cullinan ◽  
T. J. Colatsky

The effects of cadmium on the delayed outward potassium current (IK) were investigated in isolated cat ventricular myocytes using the single suction pipette voltage-clamp technique. IK activation was examined using peak tail currents elicited after 750-ms voltage-clamp steps to selected membrane potentials from a holding potential of -40 mV. In the presence of Cd2+ (0.2 mM), peak tail currents increased from a control value of 85 +/- 12 to 125 +/- 18 pA (n = 4). Activation curves constructed from the average peak tail-current measurements in all experiments showed that Cd2+ shifted the voltage dependence of activation to more positive potentials by 16.4 +/- 2.0 mV and increased the slope factor of the activation curve from 6.1 +/- 0.2 to 6.9 +/- 0.2 mV. In the absence of Cd2+, increases in holding potential from -30 to -70 mV had no effect on the magnitude of the peak tail currents, suggesting that the Cd(2+)-induced increase was not the result of a voltage-dependent increase in the number of available K+ channels at the holding potential. Slow voltage ramps from -70 to +70 mV revealed that Cd2+ increased the outward current at membrane potentials positive to +20 mV and shifted the voltage range in which IK inwardly rectified to more positive potentials. The fully activated current-voltage relationship was also shifted to more positive potentials by Cd2+. Cd2+ did not alter channel selectivity for K+.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 275 (1) ◽  
pp. H301-H321 ◽  
Author(s):  
Marc Courtemanche ◽  
Rafael J. Ramirez ◽  
Stanley Nattel

The mechanisms underlying many important properties of the human atrial action potential (AP) are poorly understood. Using specific formulations of the K+, Na+, and Ca2+ currents based on data recorded from human atrial myocytes, along with representations of pump, exchange, and background currents, we developed a mathematical model of the AP. The model AP resembles APs recorded from human atrial samples and responds to rate changes, L-type Ca2+ current blockade, Na+/Ca2+ exchanger inhibition, and variations in transient outward current amplitude in a fashion similar to experimental recordings. Rate-dependent adaptation of AP duration, an important determinant of susceptibility to atrial fibrillation, was attributable to incomplete L-type Ca2+ current recovery from inactivation and incomplete delayed rectifier current deactivation at rapid rates. Experimental observations of variable AP morphology could be accounted for by changes in transient outward current density, as suggested experimentally. We conclude that this mathematical model of the human atrial AP reproduces a variety of observed AP behaviors and provides insights into the mechanisms of clinically important AP properties.


1999 ◽  
Vol 276 (3) ◽  
pp. H1064-H1077 ◽  
Author(s):  
E. Etienne Verheijck ◽  
Antoni C. G. van Ginneken ◽  
Ronald Wilders ◽  
Lennart N. Bouman

The role of L-type calcium current ( I Ca,L) in impulse generation was studied in single sinoatrial nodal myocytes of the rabbit, with the use of the amphotericin-perforated patch-clamp technique. Nifedipine, at a concentration of 5 μM, was used to block I Ca,L. At this concentration, nifedipine selectively blocked I Ca,L for 81% without affecting the T-type calcium current ( I Ca,T), the fast sodium current, the delayed rectifier current ( I K), and the hyperpolarization-activated inward current. Furthermore, we did not observe the sustained inward current. The selective action of nifedipine on I Ca,L enabled us to determine the activation threshold of I Ca,L, which was around −60 mV. As nifedipine (5 μM) abolished spontaneous activity, we used a combined voltage- and current-clamp protocol to study the effects of I Ca,L blockade on repolarization and diastolic depolarization. This protocol mimics the action potential such that the repolarization and subsequent diastolic depolarization are studied in current-clamp conditions. Nifedipine significantly decreased action potential duration at 50% repolarization and reduced diastolic depolarization rate over the entire diastole. Evidence was found that recovery from inactivation of I Ca,L occurs during repolarization, which makes I Ca,L available already early in diastole. We conclude that I Ca,L contributes significantly to the net inward current during diastole and can modulate the entire diastolic depolarization.


2013 ◽  
Vol 91 (4) ◽  
pp. 306-315 ◽  
Author(s):  
Oleg E. Osadchii

Quinidine is a class Ia Na+ channel blocker that prolongs cardiac repolarization owing to the inhibition of IKr, the rapid component of the delayed rectifier current. Although quinidine may induce proarrhythmia, the contributing mechanisms remain incompletely understood. This study examined whether quinidine may set proarrhythmic substrate by inducing spatiotemporal abnormalities in repolarization and refractoriness. The monophasic action potential duration (APD), effective refractory periods (ERPs), and volume-conducted electrocardiograms (ECGs) were assessed in perfused guinea-pig hearts. Quinidine was found to produce the reverse rate-dependent prolongation of ventricular repolarization, which contributed to increased steepness of APD restitution. Throughout the epicardium, quinidine elicited a greater APD increase in the left ventricular chamber compared with the right ventricle, thereby enhancing spatial repolarization heterogeneities. Quinidine prolonged APD to a greater extent than ERP, thus extending the vulnerable window for ventricular re-excitation. This change was attributed to increased triangulation of epicardial action potential because of greater APD lengthening at 90% repolarization than at 30% repolarization. Over the transmural plane, quinidine evoked a greater ERP prolongation at endocardium than epicardium and increased dispersion of refractoriness. Premature ectopic beats and monomorphic ventricular tachycardia were observed in 50% of quinidine-treated heart preparations. In summary, abnormal changes in repolarization and refractoriness contribute greatly to proarrhythmic substrate upon quinidine infusion.


2007 ◽  
Vol 293 (4) ◽  
pp. H2168-H2177 ◽  
Author(s):  
Scott A. Grandy ◽  
Véronique Trépanier-Boulay ◽  
Céline Fiset

To better understand the mechanisms that underlie cardiac repolarization abnormalities in the immature heart, this study characterized and compared K+ currents in mouse ventricular myocytes from day 1, day 7, day 20, and adult CD1 mice to determine the effects of postnatal development on ventricular repolarization. Current- and patch-clamp techniques were used to examine action potentials and the K+ currents underlying repolarization in isolated myocytes. RT-PCR was used to quantify mRNA expression for the K+ channels of interest. This study found that action potential duration (APD) decreased as age increased, with the shortest APDs observed in adult myocytes. This study also showed that K+ currents and the mRNA relative abundance for the various K+ channels were significantly greater in adult myocytes compared with day 1 myocytes. Examination of the individual components of total K+ current revealed that the inward rectifier K+ current ( IK1) developed by day 7, both the Ca2+-independent transient outward current ( Ito) and the steady-state outward K+ current ( Iss) developed by day 20, and the ultrarapid delayed rectifier K+ current ( IKur) did not fully develop until the mouse reached maturity. Interestingly, the increase in IKur was not associated with a decrease in APD. Comparison of atrial and ventricular K+ currents showed that Ito and IKur density were significantly greater in day 7, day 20, and adult myocytes compared with age-matched atrial cells. Overall, it appears that, in mouse ventricle, developmental changes in APD are likely attributable to increases in Ito, Iss, and IK1, whereas the role of IKur during postnatal development appears to be less critical to APD.


1989 ◽  
Vol 257 (3) ◽  
pp. C461-C469 ◽  
Author(s):  
W. C. Cole ◽  
K. M. Sanders

Outward currents of colonic smooth muscle cells were characterized by the whole cell voltage-clamp method. Four components of outward current were identified: a time-independent and three time-dependent components. The time-dependent current showed strong outward rectification positive to -25 mV and was blocked by tetraethylammonium. The time-dependent components were separated on the basis of their time courses, voltage dependence, and pharmacological sensitivities. They are as follows. 1) A Ca2+-activated K current sensitive to external Ca2+ and Ca2+ influx was blocked by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (0.1 X 10(-3) M) and nifedipine (1 X 10(-6) and was increased by elevated Ca2+ (8 X 10(-6) M) and BAY K 8644 (1 X 10(-6) M). 2) A "delayed rectifier" current was observed that decayed slowly with time and showed no voltage-dependent inactivation. 3) Spontaneous transient outward currents that were blocked by ryanodine (2 X 10(-6) M) were also recorded. The possible contributions of these currents to the electrical activity of colonic muscle cells in situ are discussed. Ca2+-activated K current may contribute a significant conductance to the repolarizing phase of electrical slow waves.


1996 ◽  
Vol 107 (5) ◽  
pp. 611-619 ◽  
Author(s):  
P S Spector ◽  
M E Curran ◽  
A Zou ◽  
M T Keating ◽  
M C Sanguinetti

The mechanism of rectification of HERG, the human cardiac delayed rectifier K+ channel, was studied after heterologous expression in Xenopus oocytes. Currents were measured using two-microelectrode and macropatch voltage clamp techniques. The fully activated current-voltage (I-V) relationship for HERG inwardly rectified. Rectification was not altered by exposing the cytoplasmic side of a macropatch to a divalent-free solution, indicating this property was not caused by voltage-dependent block of outward current by Mg2+ or other soluble cytosolic molecules. The instantaneous I-V relationship for HERG was linear after removal of fast inactivation by a brief hyperpolarization. The time constants for the onset of and recovery from inactivation were a bell-shaped function of membrane potential. The time constants of inactivation varied from 1.8 ms at +50 mV to 16 ms at -20 mV; recovery from inactivation varied from 4.7 ms at -120 mV to 15 ms at -50 mV. Truncation of the NH2-terminal region of HERG shifted the voltage dependence of activation and inactivation by +20 to +30 mV. In addition, the rate of deactivation of the truncated channel was much faster than wild-type HERG. The mechanism of HERG rectification is voltage-gated fast inactivation. Inactivation of channels proceeds at a much faster rate than activation, such that no outward current is observed upon depolarization to very high membrane potentials. Fast inactivation of HERG and the resulting rectification are partly responsible for the prolonged plateau phase typical of ventricular action potentials.


1987 ◽  
Vol 90 (5) ◽  
pp. 671-701 ◽  
Author(s):  
G N Tseng ◽  
R B Robinson ◽  
B F Hoffman

The membrane potential and membrane currents of single canine ventricular myocytes were studied using either single microelectrodes or suction pipettes. The myocytes displayed passive membrane properties and an action potential configuration similar to those described for multicellular dog ventricular tissue. As for other cardiac cells, in canine ventricular myocytes: (a) an inward rectifier current plays an important role in determining the resting membrane potential and repolarization rate; (b) a tetrodotoxin-sensitive Na current helps maintain the action potential plateau; and (c) the Ca current has fast kinetics and a large amplitude. Unexpected findings were the following: (a) in approximately half of the myocytes, there is a transient outward current composed of two components, one blocked by 4-aminopyridine and the other by Mn or caffeine; (b) there is clearly a time-dependent outward current (delayed rectifier current) that contributes to repolarization; and (c) the relationship of maximum upstroke velocity of phase 0 to membrane potential is more positive and steeper than that observed in cardiac tissues from Purkinje fibers.


1998 ◽  
Vol 274 (3) ◽  
pp. C577-C585 ◽  
Author(s):  
Gui-Rong Li ◽  
Haiying Sun ◽  
Stanley Nattel

The threshold potential for the classical depolarization-activated transient outward K+ current and Cl− current is positive to −30 mV. With the whole cell patch technique, a transient outward current was elicited in the presence of 5 mM 4-aminopyridine (4-AP) and 5 μM ryanodine at voltages positive to the K+ equilibrium potential in canine ventricular myocytes. The current was abolished by 200 μM Ba2+ or omission of external K+([Formula: see text]) and showed biexponential inactivation. The current-voltage relation for the peak of the transient outward component showed moderate inward rectification. The transient outward current demonstrated voltage-dependent inactivation (half-inactivation voltage: −43.5 ± 3.2 mV) and rapid, monoexponential recovery from inactivation (time constant: 13.2 ± 2.5 ms). The reversal potential responded to the changes in[Formula: see text] concentration. Action potential clamp revealed two phases of Ba2+-sensitive current during the action potential, including a large early transient component after the upstroke and a later outward component during phase 3 repolarization. The present study demonstrates that depolarization may elicit a Ba2+- and[Formula: see text]-sensitive, 4-AP-insensitive, transient outward current with inward rectification in canine ventricular myocytes. The properties of this K+ current suggest that it may carry a significant early outward current upon depolarization that may play a role in determining membrane excitability and action potential morphology.


2006 ◽  
Vol 290 (3) ◽  
pp. H1038-H1049 ◽  
Author(s):  
Shetuan Zhang

Isolation of the rapidly activating delayed rectifier potassium current ( IKr) from other cardiac currents has been a difficult task for quantitative study of this current. The present study was designed to separate IKr using Cs+ in cardiac myocytes. Cs+ have been known to block a variety of K+ channels, including many of those involved in the cardiac action potential such as inward rectifier potassium current IK1 and the transient outward potassium current Ito. However, under isotonic Cs+ conditions (135 mM Cs+), a significant membrane current was recorded in isolated rabbit ventricular myocytes. This current displayed the voltage-dependent onset of and recovery from inactivation that are characteristic to IKr. Consistently, the current was selectively inhibited by the specific IKr blockers. The biophysical and pharmacological properties of the Cs+-carried human ether-a-go-go-related gene (hERG) current were very similar to those of the Cs+-carried IKr in ventricular myocytes. The primary sequence of the selectivity filter in hERG was in part responsible for the Cs+ permeability, which was lost when the sequence was changed from GFG to GYG, characteristic of other, Cs+-impermeable K+ channels. Thus the unique high Cs+ permeability in IKr channels provides an effective way to isolate IKr current. Although the biophysical and pharmacological properties of the Cs+-carried IKr are different from those of the K+-carried IKr, such an assay enables IKr current to be recorded at a level that is large enough and sufficiently robust to evaluate any IKr alterations in native tissues in response to physiological or pathological changes. It is particularly useful for exploring the role of reduction of IKr in arrhythmias associated with heart failure and long QT syndrome due to the reduced hERG channel membrane expression.


Sign in / Sign up

Export Citation Format

Share Document