Enhancement of glucose uptake in stunned myocardium: role of glucose transporter

1997 ◽  
Vol 272 (3) ◽  
pp. H1122-H1130 ◽  
Author(s):  
K. Hashimoto ◽  
T. Nishimura ◽  
M. Ishikawa ◽  
K. Koga ◽  
T. Mori ◽  
...  

This study quantifies the myocardial glucose uptake and clarifies the pathway of augmented glucose uptake in myocardium reperfused after a brief period of ischemia (stunned myocardium). The glucose uptake rate was determined from the time course of the sugar phosphate (SP) resonance in rat myocardium (d[SP]/dt) with 31P nuclear magnetic resonance after the substitution of glucose with its analog 2-deoxyglucose. The d[SP]/dt in stunned myocardium [1.03 +/- 0.05 (SE) micromol x g wet wt(-1) x min(-1); n = 8] increased significantly compared with nonischemic control myocardium (0.18 +/- 0.03 micromol x g wet wt(-1) x min(-1); n = 8; P < 0.0001), reaching the maximal stimulatory uptake rate during exposure to insulin (1.05 +/- 0.04 micromol x g wet wt(-1) x min(-1); n = 8). Twenty minutes after reperfusion, the d[SP]/dt was still augmented (0.41 +/- 0.05 micromol x g wet wt(-1) x min(-1); n = 5; P < 0.05 vs. control myocardium). To elucidate further the mechanism of augmented glucose uptake, N6-(L-2-phenylisopropyl)-adenosine (PIA; 100 micromol/l), a potent blocker of the glucose transporter, was administered to stunned hearts and, as a control, to insulin-stimulated hearts. PIA significantly and comparably inhibited the increase in d[SP]/dt in stunned myocardium (0.36 +/- 0.07 micromol x g wet wt(-1) x min(-1); n = 4; P < 0.0001 vs. without PIA) and in insulin-stimulated myocardium (0.38 +/- 0.02 micromol x g wet wt(-1) x min(-1); n = 4; P < 0.0001 vs. without PIA). These results indicate that the augmented glucose uptake in stunned myocardium is maintained by the glucose transporter, the amount of which is almost equal to that which can be maximally recruited by insulin.

2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Hyun Jin Baek ◽  
Yong Joon Jeong ◽  
Jeong Eun Kwon ◽  
Jong Sung Ra ◽  
Sung Ryul Lee ◽  
...  

The extract of the Momordica charantia fruit (MCE) is recognized as an alternative treatment for diabetes. The extract of Ligularia fischeri leaves (LFE) is traditionally used as a folk medicine for treating inflammatory diseases in Korea as well. In this study, we investigated the synergistic effect of MCE combined with LFE on antihyperglycemic and antihyperlipidemic potentials. Based on the α-glucosidase inhibitory effect and promotion of adipocyte differentiation in the 3T3-L1 cell line, the MLM was prepared with MCE:LFE (8:2 weight:weight). MLM showed the synergistic effects in the promotion of the glucose uptake rate, suppression of dipeptidyl peptidase-4 (DPP-4) mRNA expression, upregulation of an insulin receptor substrate and glucose transporter type-4 expression, and an increase in insulin-associated signaling in C2C12 cells. In addition, the efficacy of peroxisome proliferator-activated receptor-γ agonism and glucose uptake rate by MLM supplementation was significantly enhanced in vitro. Then, the antihyperglycemic and antihyperlipidemic effects of MCE, LFE, and MLM at the dose of 50, 100, and 200 mg/kg/day (n = 6 per each group) were determined in streptozotocin (STZ)-insulted mice fed an atherogenic diet (ATH) for 4 weeks. In addition, MLM (50, 100, and 200 mg/kg/day, n = 5 per each group) was supplemented in ATH-fed db/db mice for 10 weeks. Compared with MCE or LFE alone, MLM supplementation led to a more significant reduction of glucose levels in both STZ/ATH and db/db/ATH mice as well as lowered lipid profiles in STZ/ATH mice. In addition, the stimulation of islet of Langerhans regeneration was more pronounced by MLM supplementation in both mice models. In conclusion, antihyperglycemic and antihyperlipidemic effects were strengthened by the combined extracts of L. fischeri and M. charantia (MLM) in diabetes-mimicking mice.


Circulation ◽  
1999 ◽  
Vol 100 (suppl_2) ◽  
Author(s):  
Ingeborg Friehs ◽  
Adrian M. Moran ◽  
Christof Stamm ◽  
Steven D. Colan ◽  
Koh Takeuchi ◽  
...  

Background —Severe hypertrophy and heart failure are important risk factors in cardiac surgery. Early adaptive changes in hypertrophy include increased ventricular mass-to-cavity volume ratio (M/V ratio) and increased dependence on glucose for energy metabolism. However, glucose uptake is decreased in the late stages of hypertrophy when ventricular dilatation and failure are present. We hypothesized that impaired glucose uptake would be evident early in the progression of hypertrophy and associated with the onset of ventricular dilatation. Methods and Results —Ten-day-old rabbits underwent banding of the descending aorta. Development of hypertrophy was followed by transthoracic echocardiography to measure left ventricular M/V ratio. Glucose uptake rate, as determined by 31 P-nuclear magnetic resonance spectroscopy measuring 2-deoxyglucose conversion to 2-deoxyglucose-6-phosphate, was measured in isolated perfused hearts obtained from banded rabbits when M/V ratio had increased by 15% from baseline (compensated hypertrophy) and by 30% from baseline (early-decompensated hypertrophy). In age-matched control animals, the rate of glucose uptake was 0.61±0.08 μmol · g of wet weight −1 · 30 min −1 (mean±SEM). With a 15% M/V ratio increase, glucose uptake rate remained at control levels (0.6±0.05 μmol · g of wet weight −1 · 30 min −1 ), compared with hearts with 30% increased M/V ratios, where glucose uptake was significantly lower (0.42±0.05 μmol · g of wet weight −1 · 30 min −1 ; P ≤0.05). Glucose transporter protein expression was the same in all groups. Conclusions —Glucose uptake rate is maintained during compensated hypertrophy. However, coinciding with severe hypertrophy, preceding ventricular dilatation, and glucose transporter protein downregulation, glucose uptake is significantly decreased. Because of the increased dependence of the hypertrophied hearts on glucose use, we speculate that this impairment may be a contributing factor in the progression to failure.


2001 ◽  
Vol 280 (1) ◽  
pp. G113-G120 ◽  
Author(s):  
Lan Jiang ◽  
Ronaldo P. Ferraris

Fructose transporter (GLUT-5) expression is low in mid-weaning rat small intestine, increases normally after weaning is completed, and can be precociously induced by premature consumption of a high-fructose (HF) diet. In this study, an in vivo perfusion model was used to determine the mechanisms regulating this substrate-induced reprogramming of GLUT-5 development. HF (100 mM) but not high-glucose (HG) perfusion increased GLUT-5 activity and mRNA abundance. In contrast, HF and HG perfusion had no effect on Na+-dependent glucose transporter (SGLT-1) expression but increased c- fos and c- jun expression. Intraperitoneal injection of actinomycin D before intestinal perfusion blocked the HF-induced increase in fructose uptake rate and GLUT-5 mRNA abundance. Actinomycin D also prevented the perfusion-induced increase in c- fos and c- jun mRNA abundance but did not affect glucose uptake rate and SGLT-1 mRNA abundance. Cycloheximide blocked the HF-induced increase in fructose uptake rate but not the increase in GLUT-5 mRNA abundance and had no effect on glucose uptake rate and SGLT-1 mRNA abundance. In neonatal rats, the substrate-induced reprogramming of intestinal fructose transport is likely to involve transcription and translation of the GLUT-5 gene.


2000 ◽  
Vol 279 (6) ◽  
pp. R2252-R2261 ◽  
Author(s):  
Utpala G. Das ◽  
Jing He ◽  
Richard A. Ehrhardt ◽  
William W. Hay ◽  
Sherin U. Devaskar

We immunolocalized the GLUT-3 glucose transporter isoform versus GLUT-1 in the late-gestation epitheliochorial ovine placenta, and we examined the effect of chronic maternal hyperglycemia and hypoglycemia on placental GLUT-3 concentrations. GLUT-3 was limited to the apical surface of the trophoectoderm, whereas GLUT-1 was on the basolateral and apical surfaces of this cell layer and in the epithelial cells lining the placental uterine glands. GLUT-3 concentrations declined at 17–20 days of chronic hyperglycemia ( P < 0.05), associated with increased uterine and uteroplacental net glucose uptake rate, but a normal fetal glucose uptake rate was observed. Chronic hypoglycemia did not change GLUT-3 concentrations, although uterine, uteroplacental, and fetal net glucose uptake rates were decreased. Thus maternal hyperglycemia causes a time-dependent decline in the entire placental glucose transporter pool (GLUT-1 and GLUT-3). In contrast, maternal hypoglycemia decreases GLUT-1 but not GLUT-3, resulting in a relatively increased GLUT-3 contribution to the placental glucose transporter pool, which could maintain glucose delivery to the placenta relative to the fetus when maternal glucose is low.


1988 ◽  
Vol 254 (5) ◽  
pp. H970-H975 ◽  
Author(s):  
W. R. Law ◽  
R. M. Raymond

Myocardial adenosine (ADO) has long been regarded as a regulator of coronary blood flow. In other tissues, such as adipose and skeletal muscle, much attention has focused on the role of ADO as a metabolic regulator of the actions of insulin. In the present study, we determined the effect of ADO infusion on insulin-stimulated myocardial glucose uptake (MGU). Mongrel dogs of either sex were instrumented to obtain arterial-coronary sinus differences for glucose, lactate, and oxygen. These were multiplied by circumflex artery blood flow (Q) to obtain uptake values. Measurements were made before and during hyperinsulinemic (4 U/min)-euglycemic clamp (clamp) with intracoronary infusions of saline, ADO, adenosine deaminase (ADA), or nitroprusside (NP). During clamp, MGU increased from a basal value of 3.0 +/- 0.8 mg/min (mean +/- SE) to 5.53 +/- 0.8 mg/min. Adenosine infusion potentiated this response, raising MGU further to 9.02 +/- 1.1 mg/min while not significantly affecting lactate or oxygen uptakes. Infusion of ADA confirmed the specificity of the response by blocking the metabolic effect of exogenously infused ADO. When NP was infused, Q increased significantly without altering MGU, indicating that the metabolic response to ADO was independent of the changes it caused in Q. A dose-response relationship existed between ADO and insulin-stimulated MGU. The metabolic response to ADO was more sensitive than the vasodilator response. It is concluded that ADO acts as a regulator of insulin in heart. This metabolic regulation occurs independent of changes in coronary blood flow.


2003 ◽  
Vol 2 (4) ◽  
pp. 708-717 ◽  
Author(s):  
Jesús Delgado-Jarana ◽  
Miguel Ángel Moreno-Mateos ◽  
Tahía Benítez

ABSTRACT Using a differential display technique, the gene gtt1, which codes for a high-affinity glucose transporter, has been cloned from the mycoparasite fungus Trichoderma harzianum CECT 2413. The deduced protein sequence of the gtt1 gene shows the 12 transmembrane domains typical of sugar transporters, together with certain residues involved in glucose uptake, such as a conserved arginine between domains IV and V and an aromatic residue (Phe) in the sequence of domain X. The gtt1 gene is transcriptionally regulated, being repressed at high levels of glucose. When carbon sources other than glucose are utilized, gtt1 repression is partially alleviated. Full derepression of gtt1 is obtained when the fungus is grown in the presence of low carbon source concentrations. This regulation pattern correlates with the role of this gene in glucose uptake during carbon starvation. Gene expression is also controlled by pH, so that the gtt1 gene is repressed at pH 6 but not at pH 3, a fact which represents a novel aspect of the influence of pH on the gene expression of transporters. pH also affects glucose transport, since a strongly acidic pH provokes a 40% decrease in glucose transport velocity. Biochemical characterization of the transport shows a very low Km value for glucose (12 μM). A transformant strain that overexpresses the gtt1 gene shows a threefold increase in glucose but not galactose or xylose uptake, a finding which confirms the role of the gtt1 gene in glucose transport. The cloning of the first filamentous ascomycete glucose transporter is the first step in elucidating the mechanisms of glucose uptake and carbon repression in aerobic fungi.


2012 ◽  
Vol 303 (5) ◽  
pp. F766-F774 ◽  
Author(s):  
Rekha Yesudas ◽  
Russell Snyder ◽  
Thomas Abbruscato ◽  
Thomas Thekkumkara

Previously, we have demonstrated human angiotensin type 1 receptor (hAT1R) promoter architecture with regard to the effect of high glucose (25 mM)-mediated transcriptional repression in human proximal tubule epithelial cells (hPTEC; Thomas BE, Thekkumkara TJ. Mol Biol Cell 15: 4347–4355, 2004). In the present study, we investigated the role of glucose transporters in high glucose-mediated hAT1R repression in primary hPTEC. Cells were exposed to normal glucose (5.5 mM) and high glucose (25 mM), followed by determination of hyperglycemia-mediated changes in receptor expression and glucose transporter activity. Exposure of cells to high glucose resulted in downregulation of ANG II binding (4,034 ± 163.3 to 1,360 ± 154.3 dpm/mg protein) and hAT1R mRNA expression (reduced 60.6 ± 4.643%) at 48 h. Under similar conditions, we observed a significant increase in glucose uptake (influx) in cells exposed to hyperglycemia. Our data indicated that the magnitude of glucose influx is concentration and time dependent. In euglycemic cells, inhibiting sodium-glucose cotransporters (SGLTs) with phlorizin and facilitative glucose transporters (GLUTs) with phloretin decreased glucose influx by 28.57 ± 0.9123 and 54.33 ± 1.202%, respectively. However, inhibiting SGLTs in cells under hyperglycemic conditions decreased glucose influx by 53.67 ± 2.906%, while GLUT-mediated glucose uptake remained unaltered (57.67 ± 3.180%). Furthermore, pretreating cells with an SGLT inhibitor reversed high glucose-mediated downregulation of the hAT1R, suggesting an involvement of SGLT in high glucose-mediated hAT1R repression. Our results suggest that in hPTEC, hyperglycemia-induced hAT1R downregulation is largely mediated through SGLT-dependent glucose influx. As ANG II is an important modulator of hPTEC transcellular sodium reabsorption and function, glucose-mediated changes in hAT1R gene expression may participate in the pathogenesis of diabetic renal disease.


Sign in / Sign up

Export Citation Format

Share Document