Impact of exercise training on ventricular properties in a canine model of congestive heart failure

1997 ◽  
Vol 272 (3) ◽  
pp. H1382-H1390 ◽  
Author(s):  
K. Todaka ◽  
J. Wang ◽  
G. H. Yi ◽  
M. Knecht ◽  
R. Stennett ◽  
...  

Exercise training improves functional class in patients with chronic heart failure (CHF) via effects on the periphery with no previously documented effect on intrinsic left ventricular (LV) properties. However, because methods used to evaluate in vivo LV function are limited, it is possible that some effects of exercise training on the failing heart have thus far eluded detection. Twelve dogs were instrumented for cardiac pacing and hemodynamic recordings. Hearts were paced rapidly for 4 wk. Six of the dogs received daily treadmill exercise (CHF(EX), 4.4 km/h, 2 h/day) concurrent with rapid pacing, while the other dogs remained sedentary (CHFs). Hemodynamic measurements taken in vivo at the end of 4 wk revealed relative preservation of maximum rate of pressure rise (2,540 +/- 440 vs. 1,720 +/- 300 mmHg/s, P < 0.05) and LV end-diastolic pressure (9 +/- 5 vs. 19 +/- 4 mmHg, P < 0.05) in CHF(EX) compared with CHFs. The hearts were then isolated and cross perfused for in vitro measurement of isovolumic pressure-volume relations; these results were compared with those of six normal dogs (N). Systolic function was similarly depressed in both groups of pacing animals [end-systolic elastance (Ees) values of 1.66 +/- 0.47 in CHFs, 1.77 +/- 0.38 in CHF(EX), and 3.05 +/- 0.81 mmHg/ml in N, with no changes in volume axis interceptors of the end-systolic pressure-volume relationship]. The diastolic myocardial stiffness constant, k, was elevated in CHFs and was normalized by exercise training (32 +/- 3 in CHFs, 21 +/- 3 in CHF(EX), 20 +/- 4 in N). Thus daily exercise training preserved in vivo hemodynamics during 4 wk of rapid cardiac pacing and was accompanied by a significant change in diastolic myocardial stiffness in vitro. These findings suggest that changes in heart function may contribute to the overall beneficial hemodynamic effects of exercise training in CHF by a significant effect on diastolic properties.

2018 ◽  
Vol 125 (1) ◽  
pp. 86-96 ◽  
Author(s):  
T. Dylan Olver ◽  
Jenna C. Edwards ◽  
Brian S. Ferguson ◽  
Jessica A. Hiemstra ◽  
Pamela K. Thorne ◽  
...  

Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Thus, the purpose of this study was to determine the therapeutic efficacy of chronic interval exercise training (IT) on large-conductance Ca2+-activated K+ (BKCa) channel-mediated coronary vascular function in heart failure. We hypothesized that chronic interval exercise training would attenuate pressure overload-induced impairments to coronary BKCa channel-mediated function. A translational large-animal model with cardiac features of HFpEF was used to test this hypothesis. Specifically, male Yucatan miniswine were divided into three groups ( n = 7/group): control (CON), aortic banded (AB)-heart failure (HF), and AB-interval trained (HF-IT). Coronary blood flow, vascular conductance, and vasodilatory capacity were measured after administration of the BKCa channel agonist NS-1619 both in vivo and in vitro in the left anterior descending coronary artery and isolated coronary arterioles, respectively. Skeletal muscle citrate synthase activity was decreased and left ventricular brain natriuretic peptide levels increased in HF vs. CON and HF-IT animals. A parallel decrease in NS-1619-dependent coronary vasodilatory reserve in vivo and isolated coronary arteriole vasodilatory responsiveness in vitro were observed in HF animals compared with CON, which was prevented in the HF-IT group. Although exercise training prevented BKCa channel-mediated coronary vascular dysfunction, it did not change BKCa channel α-subunit mRNA, protein, or cellular location (i.e., membrane vs. cytoplasm). In conclusion, these results demonstrate the viability of chronic interval exercise training as a therapy for central and peripheral adaptations of experimental heart failure, including BKCa channel-mediated coronary vascular dysfunction. NEW & NOTEWORTHY Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Our findings show that chronic interval exercise training can prevent BKCa channel-mediated coronary vascular dysfunction in a translational swine model of chronic pressure overload-induced heart failure with relevance to human HFpEF.


1991 ◽  
Vol 260 (3) ◽  
pp. H909-H916 ◽  
Author(s):  
J. Tong ◽  
P. K. Ganguly ◽  
P. K. Singal

Changes in myocardial norepinephrine (NE) levels, turnover, uptake, and release in rats were examined at two stages of cardiac dysfunction induced by adriamycin (ADR) given intraperitoneally in six equal doses over a period of 2 wk for a cumulative dose of 15 mg/kg. At 3 wk posttreatment, ADR-treated animals showed no changes in left ventricular systolic pressure (LVSP), aortic systolic pressure (ASP), and aortic diastolic pressure (ADP) but left ventricular end-diastolic pressure (LVEDP) was significantly higher. At 6 wk posttreatment, LVSP, ASP, and ADP were significantly lower and LVEDP remained elevated. Animals in both ADR-treated groups showed signs of congestive heart failure as indicated by ascites, congestive liver, and elevated LVEDP. Structural changes typical of ADR cardiomyopathy were more pronounced in the 6-wk group. In vivo hemodynamic as well as in vitro muscle function response to different concentrations of epinephrine was depressed in its duration as well as extent in both 3- and 6-wk ADR-treated groups. Myocardial NE levels were increased in the 3-wk group but were depressed in the 6-wk group. NE turnover was faster in both 3- and 6-wk ADR groups, uptake was increased only in the 6-wk group, and release was unchanged. These data show increased cardiac sympathetic tone at both stages of ADR-induced congestive heart failure.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Barki ◽  
M Losito ◽  
M.M Caracciolo ◽  
F Bandera ◽  
M Rovida ◽  
...  

Abstract Background The right ventricle (RV) is extremely sensitive to hemodynamic changes and increased impedance. In acute heart failure (AHF), the development of pulmonary venous congestion and the increase of left ventricular (LV) filling pressures favors pulmonary vascular adverse remodeling and ultimately RV dysfunction, leading to the onset of symptoms and to a further decay of cardiac dynamics. Purpose The aim of the study was to evaluate RV morphology and functional dynamics at admission and discharge in patients hospitalized for AHF, analyzing the role and the response to treatment of the RV and its coupling with pulmonary circulation (PC). Methods Eighty-one AHF patients (mean age 75.75±10.6 years, 59% males) were prospectively enrolled within 24–48 hours from admission to the emergency department (ED). In either the acute phase and at pre-discharge all patients underwent M-Mode, 2-Dimensional and Doppler transthoracic echocardiography (TTE), as well as lung ultrasonography (LUS), to detect an increase of extravascular lung water (EVLW) and development of pleural effusion. Laboratory tests were performed in the acute phase and at pre-discharge including the evaluation of NT-proBNP. Results At baseline we observed a high prevalence of RV dysfunction as documented by a reduced RV systolic longitudinal function [mean tricuspid annular plane systolic excursion (TAPSE) at admission of 16.47±3.86 mm with 50% of the patients exhibiting a TAPSE&lt;16mm], a decreased DTI-derived tricuspid lateral annular systolic velocity (50% of the subjects showed a tricuspid s' wave&lt;10 cm/s) and a reduced RV fractional area change (mean FAC at admission of 36.4±14.6%). Furthermore, an increased pulmonary arterial systolic pressure (PASP) and a severe impairment in terms of RV coupling to PC was detected at initial evaluation (mean PASP at admission: 38.8±10.8 mmHg; average TAPSE/PASP at admission: 0.45±0.17 mm/mmHg). At pre-discharge a significant increment of TAPSE (16.47±3.86 mm vs. 17.45±3.88; p=0.05) and a reduction of PASP (38.8±10.8 mmHg vs. 30.5±9.6mmHg, p&lt;0.001) was observed. Furthermore, in the whole population we assisted to a significant improvement in terms of RV function and its coupling with PC as demonstrated by the significant increase of TAPSE/PASP ratio (TAPSE/PASP: 0.45±0.17 mm/mmHg vs 0.62±0.20 mm/mmHg; p&lt;0.001). Patients significantly reduced from admission to discharge the number of B-lines and NT-proBNP (B-lines: 22.2±17.1 vs. 6.5±5 p&lt;0.001; NT-proBNP: 8738±948 ng/l vs 4227±659 ng/l p&lt;0.001) (Figure 1). Nonetheless, no significant changes of left atrial and left ventricular dimensions and function were noted. Conclusions In AHF, development of congestion and EVLW significantly impact on the right heart function. Decongestion therapy is effective for restoring acute reversal of RV dysfunction, but the question remains on how to impact on the biological properties of the RV. Funding Acknowledgement Type of funding source: None


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Marcus Sandri ◽  
Stephan Gielen ◽  
Norman Mangner ◽  
Volker Adams ◽  
Sandra Erbs ◽  
...  

Background: The concept of ventricular-arterial coupling implies that LV-function is determined by the three factors left ventricular diastolic, left ventricular systolic and arterial elastance. We have previously documented an improvement in endothelial function and systolic LV-function in patients with chronic heart failure (CHF) after 6 months of exercise training (ET). It remains, however, unclear, how shorter ET periods may affect endothelial, systolic and diastolic ventricular function as echocardiographic parameters related to ventricular arterial coupling in patients with CHF. METHODS: In this ongoing study we randomised 43 patients with stable CHF (age 60.3 ± 2.9 years, EF 27.4 ± 1.7%, VO 2 max 14.7 ± 4.3ml/kg*min) to a training or a control group (C). Patients in the training group exercised 4 times daily at 70% of the individual heart rate reserve for 4 weeks under supervision. At baseline and after 4 weeks the E/A ratio and septal/lateral E’/A’ velocities were determined by echocardiography with tissue Doppler. Exercise capacity was measured by ergospirometry and flow-mediated dilatation (FMD) was assessed by high-resolution radial ultrasound. RESULTS: After only 4 weeks of ET oxygen uptake at peak exercise increased from 14.9 ± 3.3 to 18.1 ± 4.7 ml/min/kg, (p<0.01 vs. C) in training subjects. Left ventricular ejection fraction improved from 26.8 ± 4.6 to 33.1 ± 5.5% (p<0.05 vs. C) in patients of the training group while it remained unchanged in the control group. E/A-ratio mended from 0.63 ± 0.12 to 0.81 ± 0.22 (p<0.01 vs. C) in training patients. Septal E’ velocities increased from 5.5 ± 0.5 to 7.8 ± 1.4 cm/s in training patients (p<0.05 vs. C). FMD of the radial artery improved from 8.2 ± 2.1 to 15.2 ± 3.8% (p<0.01 vs. C) as a result of ET. CONCLUSIONS: Only 4 weeks of endurance training are highly effective with significantly improved FMD accompanied by an emended systolic and diastolic LV-function. We hypothesise that the improvement in LV-EF in training patients may be caused by a corrected ventricular-arterial coupling: ventricular diastolic relaxation and effective endothelial function are ameliorated resulting in an augmentation of stroke volume.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Jordan Lancaster ◽  
Elizabeth Juneman ◽  
Nicholle Johnson ◽  
Joseph Bahl ◽  
Steven Goldman

Background: Cell-based regenerative therapies hold promise as a new treatment for heart failure. Tissue engineered scaffolds used for cell delivery enhance potential improvements in cardiac function by providing the structural and nutrient support for transplanted cell survival, integration, and re-population of injured tissues. Previously, our laboratory reported improvements in left ventricular (LV) function in rats with chronic heart failure (CHF) after placement of a neonatal cardiomyocyte (NCM) seeded 3-dimensional fibroblast construct (3DFC). In brief, 3 weeks after implantation of the NCM-3DFC, LV function improves by increasing (p<0.05) ejection fraction 26% and cardiac index 33%, while decreasing (p<0.05) LV end diastolic pressure 38%. The current report focuses on NCM survival and LV improvements out to 7 weeks post NCM-3DFC implantation. Methods and Results: Cardiomyocytes were isolated from neonatal rat hearts and seeded onto a 3DFC. We evaluated NCM-3DFC in vitro for cellular organization and the presence of functional gap junctions, which demonstrated extensive cell-to-cell connectivity. At 5 days in culture, the seeded patch contracted spontaneously in a rhythmic and directional fashion, beating at 43±3 beats/min with a mean displacement of 1.3±0.3 mm and contraction velocity of 0.8±0.2 mm/sec. The seeded patch could be electrically paced at near physiological rates (270±30 beats/min) while maintaining coordinated, directional contractions. For in vivo evaluation, rats underwent coronary artery ligation and allowed to recover for 3 weeks to establish CHF. NCM-3DFC were implanted 3 weeks after ligation and evaluated 3 and 7 weeks later (6 and 10 weeks after ligation respectively). Live cell tracking of implanted NCM using Q-Dots revealed ∼9% survival of transplanted cells 3 weeks after implantation. In addition, improvements in LV function continued at 7 weeks after implantation of the NCM-3DFC by increasing (p<0.05) ejection fraction 37%. Conclusion: A multicellular, electromechanically organized, cardiomyocyte scaffold, engineered in vitro can improve LV function when implanted directly on the hearts of rats with CHF; the transplanted cells survive and improve LV function chronically.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Andrea Iorga ◽  
Rangarajan Nadadur ◽  
Salil Sharma ◽  
Jingyuan Li ◽  
Mansoureh Eghbali

Heart failure is generally characterized by increased fibrosis and inflammation, which leads to functional and contractile defects. We have previously shown that short-term estrogen (E2) treatment can rescue pressure overload-induced decompensated heart failure (HF) in mice. Here, we investigate the anti-inflammatory and anti-fibrotic effects of E2 on reversing the adverse remodeling of the left ventricle which occurs during the progression to heart failure. Trans-aortic constriction procedure was used to induce HF. Once the ejection fraction reached ∼30%, one group of mice was sacrificed and the other group was treated with E2 (30 αg/kg/day) for 10 days. In vitro, co-cultured neonatal rat ventricular myocytes and fibroblasts were treated with Angiotensin II (AngII) to simulate cardiac stress, both in the presence or absence of E2. In vivo RT-PCR showed that the transcript levels of the pro-fibrotic markers Collagen I, TGFβ, Fibrosin 1 (FBRS) and Lysil Oxidase (LOX) were significantly upregulated in HF (from 1.00±0.16 to 1.83±0.11 for Collagen 1, 1±0.86 to 4.33±0.59 for TGFβ, 1±0.52 to 3.61±0.22 for FBRS and 1.00±0.33 to 2.88±0.32 for LOX) and were reduced with E2 treatment to levels similar to CTRL. E2 also restored in vitro AngII-induced upregulation of LOX, TGFβ and Collagen 1 (LOX:1±0.23 in CTRL, 6.87±0.26 in AngII and 2.80±1.5 in AngII+E2; TGFβ: 1±0.08 in CTRL, 3.30±0.25 in AngII and 1.59±0.21 in AngII+E2; Collagen 1: 1±0.05 in CTRL.2±0.01 in AngII and 0.65±0.02 (p<0.05, values normalized to CTRL)). Furthermore, the pro-inflammatory interleukins IL-1β and IL-6 were upregulated from 1±0.19 to 1.90±0.09 and 1±0.30 to 5.29±0.77 in the in vivo model of HF, respectively, and reversed to CTRL levels with E2 therapy. In vitro, IL-1β was also significantly increased ∼ 4 fold from 1±0.63 in CTRL to 3.86±0.14 with AngII treatment and restored to 1.29±0.77 with Ang+E2 treatment. Lastly, the anti-inflammatory interleukin IL-10 was downregulated from 1.00±0.17 to 0.49±0.03 in HF and reversed to 0.67±0.09 in vivo with E2 therapy (all values normalized to CTRL). This data strongly suggests that one of the mechanisms for the beneficial action of estrogen on left ventricular heart failure is through reversal of inflammation and fibrosis.


2019 ◽  
Vol 28 (01) ◽  
pp. 044-049
Author(s):  
Sidhi Purwowiyoto ◽  
Budhi Purwowiyoto ◽  
Amiliana Soesanto ◽  
Anwar Santoso

Exercise improves morbidity, fatality rate, and quality of life in heart failure with low ejection fraction, but fewer data available in heart failure with preserved ejection fraction (HFPEF).The purpose of this study is to test the hypothesis that exercise training might improve the longitudinal intrinsic left ventricular (LV) function in HFPEF patients.This quasi-experimental study had recruited 30 patients with HFPEF. Exercise training program had been performed for a month with a total of 20 times exercise sessions and evaluated every 2 weeks. Echocardiography was performed before sessions, second week and fourth week of exercise training. Six-minute walk tests (6MWTs) and quality-of-life variables using Minnesota living with HF scoring and the 5-item World Health Organization Well-Being Index scoring were measured before and after exercise as well.Left ventricular filling pressure, represented by the ratio of early diastolic mitral flow velocity/early diastolic annular velocity and left atrial volume index, improved during exercise. The longitudinal intrinsic LV function, represented by four-chamber longitudinal strain, augmented during exercise (p < 0.001). Aerobic capacity, measured by 6MWT, increased significantly (p = 0.001). Quality of life improved significantly during exercise (p < 0.001).Exercise training was suggested to improve the longitudinal intrinsic LV function and quality of life in HFPEF. Clinical Trial Registration: ACTRN12614001042639.


2013 ◽  
Vol 305 (4) ◽  
pp. H575-H589 ◽  
Author(s):  
Katarzyna Kazmierczak ◽  
Ellena C. Paulino ◽  
Wenrui Huang ◽  
Priya Muthu ◽  
Jingsheng Liang ◽  
...  

The functional consequences of the familial hypertrophic cardiomyopathy A57G (alanine-to-glycine) mutation in the myosin ventricular essential light chain (ELC) were assessed in vitro and in vivo using previously generated transgenic (Tg) mice expressing A57G-ELC mutant vs. wild-type (WT) of human cardiac ELC and in recombinant A57G- or WT-protein-exchanged porcine cardiac muscle strips. Compared with the Tg-WT, there was a significant increase in the Ca2+ sensitivity of force (ΔpCa50 ≅ 0.1) and an ∼1.3-fold decrease in maximal force per cross section of muscle observed in the mutant preparations. In addition, a significant increase in passive tension in response to stretch was monitored in Tg-A57G vs. Tg-WT strips indicating a mutation-induced myocardial stiffness. Consistently, the hearts of Tg-A57G mice demonstrated a high level of fibrosis and hypertrophy manifested by increased heart weight-to-body weight ratios and a decreased number of nuclei indicating an increase in the two-dimensional size of Tg-A57G vs. Tg-WT myocytes. Echocardiography examination showed a phenotype of eccentric hypertrophy in Tg-A57G mice, enhanced left ventricular (LV) cavity dimension without changes in LV posterior/anterior wall thickness. Invasive hemodynamics data revealed significantly increased end-systolic elastance, defined by the slope of the pressure-volume relationship, indicating a mutation-induced increase in cardiac contractility. Our results suggest that the A57G allele causes disease by means of a discrete modulation of myofilament function, increased Ca2+ sensitivity, and decreased maximal tension followed by compensatory hypertrophy and enhanced contractility. These and other contributing factors such as increased myocardial stiffness and fibrosis most likely activate cardiomyopathic signaling pathways leading to pathologic cardiac remodeling.


1984 ◽  
Vol 247 (3) ◽  
pp. H371-H379 ◽  
Author(s):  
P. A. Anderson ◽  
K. L. Glick ◽  
A. Manring ◽  
C. Crenshaw

Developmental changes in contractility were sought in the fetal and postnatal sheep heart by using postextrasystolic potentiation and force, pressure, and wall-motion measures. Two different preparations were used, isolated myocardium and the chronically instrumented lamb. In the isolated muscle, the following increased significantly with age: force of contraction, the maximum rate of rise of force, and postextrasystolic potentiation. In the intact heart prior to birth [period of study, 20 +/- 4 (SD) days] heart rate (HR) fell significantly, and the following increased significantly: postextrasystolic potentiation [measured with the maximum rate of rise of left ventricular (LV) pressure (Pmax)], LV peak systolic pressure (LVP), end-diastolic dimension (EDD), end-systolic dimension (ESD), and aortic diastolic pressure. After birth, LVP, Pmax, HR, LVEDP, EDD, and ESD increased and postextrasystolic potentiation fell. The latter fall was not found in vitro and probably demonstrates a transient change in contractility, related to hormonal or neural stimulation. Over the subsequent postnatal days (6-122 days), HR fell while potentiation, EDD, and ESD increased significantly. Both in vitro and in vivo, the overall increase in postextrasystolic potentiation demonstrates a similar long-term change in contractility. The similarity of this change to that induced by mild hypertrophy suggests that development and mild hypertrophy alter myocardial contractility through a common mechanism.


2011 ◽  
Vol 300 (3) ◽  
pp. H943-H950 ◽  
Author(s):  
Roland Vetter ◽  
Uwe Rehfeld ◽  
Christoph Reissfelder ◽  
Henry Fechner ◽  
Enn Seppet ◽  
...  

The sarco/endoplasmic reticulum (SR) Ca2+-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca2+ reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca2+ handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6- N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/d tmax, and dP/d tmin in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT ( P < 0.05). In parallel, a 1.4-fold higher Vmax value of homogenate SR Ca2+ uptake was observed in hypothyroid TG ( P < 0.05 vs. hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by −24% was markedly less than the decrease of −49% in WT ( P < 0.05). A linear relationship was observed between the SERCA2a/PLB mRNA ratio values and the Vmax values of SR Ca2+ uptake when the respective data of all experimental groups were plotted together ( r = 0.90). The data show that expression of the TH-insensitive SERCA2a minigene compensates for loss of expressional activity of the TH-responsive native SERCA2a gene in the female hypothyroid rat heart. However, SR Ca2+ uptake and in vivo heart function were only partially rescued.


Sign in / Sign up

Export Citation Format

Share Document