Inhibition of NO synthesis does not potentiate dynamic cardiovascular response to sympathetic nerve activity

1997 ◽  
Vol 273 (1) ◽  
pp. H38-H43 ◽  
Author(s):  
H. Miyano ◽  
T. Kawada ◽  
M. Sugimachi ◽  
T. Shishido ◽  
T. Sato ◽  
...  

We examined whether the inhibition of nitric oxide (NO) synthesis potentiates the dynamic sympathetic regulation of the cardiovascular system through the baroreflex. In anesthetized rabbits, we imposed random pressure perturbations on the isolated carotid sinuses to evoke random changes in sympathetic nerve activity (SNA). We estimated the transfer functions from SNA to both aortic pressure (AoP) and heart rate (HR). The inhibition of NO synthesis by NG-monomethyl-L-arginine (L-NMMA, 40 mg/ kg) altered neither the transfer function from SNA to AoP nor that from SNA to HR. In contrast, sodium nitroprusside (3-6 micrograms.kg-1.min-1) significantly decreased the steady-state gain (40.3 +/- 11.7% of the control, P < 0.05) of the transfer function from SNA to AoP without affecting the HR responses. We conclude that the basal release of NO may have a role in the tonic blood pressure regulation, whereas it may not be involved in the dynamic sympathetic regulation of AoP or HR through the baroreflex.

1994 ◽  
Vol 267 (1) ◽  
pp. H92-H99 ◽  
Author(s):  
H. Masaki ◽  
T. Imaizumi ◽  
Y. Harasawa ◽  
A. Takeshita

Excessive sympathetic nerve activity in heart failure could be attributable to impaired arterial baroreflex function. Employing transfer function analysis, we evaluated the arterial baroreflex in control rabbits (n = 8) and in rabbits with rapid pacing-induced heart failure (n = 10) in a dynamic manner. Rabbits in the heart-failure group showed elevated filling pressures, depressed first derivative of left ventricular pressure, pulmonary congestion, and an increased level of plasma norepinephrine. Varying aortic pressure pseudorandomly and recording responses in renal nerve activity, we calculated the transfer function from aortic pressure to renal nerve activity. The gain of the transfer function was similar between control and heart-failure rabbits over 0.04–0.4 Hz as well as the phase and the coherence, indicating that the dynamic arterial baroreflex was preserved in our rabbit heart-failure model. Vagotomy increased the gain of the arterial baroreflex over 0.04–0.4 Hz in control (P < 0.05) but not in heart-failure rabbits, indicating that vagal afferents, which normally inhibit the dynamic arterial baroreflex, no more did so in heart failure. We conclude that excessive sympathetic nerve activity in heart failure may not be due to impaired dynamic arterial baroreflex, but that this apparently preserved arterial baroreflex in heart failure may be due to impaired cardiopulmonary baroreflex.


2007 ◽  
Vol 102 (3) ◽  
pp. 1034-1040 ◽  
Author(s):  
Valérie Oréa ◽  
Roy Kanbar ◽  
Bruno Chapuis ◽  
Christian Barrès ◽  
Claude Julien

This study examined the possible influence of changes in heart rate (HR) on the gain of the transfer function relating renal sympathetic nerve activity (RSNA) to arterial pressure (AP) at HR frequency in rats. In seven urethane-anesthetized rats, AP and RSNA were recorded under baseline conditions (spontaneous HR = 338 ± 6 beats/min, i.e., 5.6 ± 0.1 Hz) and during 70-s periods of cardiac pacing at 6–9 Hz applied in random order. Cardiac pacing slightly increased mean AP (0.8 ± 0.2 mmHg/Hz) and decreased pulse pressure (−3.6 ± 0.3 mmHg/Hz) while leaving the mean level of RSNA essentially unaltered ( P = 0.680, repeated-measures ANOVA). The gain of the transfer function from AP to RSNA measured at HR frequency was always associated with a strong, significant coherence and was stable between 6 and 9 Hz ( P = 0.185). The transfer function gain measured under baseline conditions [2.44 ± 0.28 normalized units (NU)/mmHg] did not differ from that measured during cardiac pacing (2.46 ± 0.27 NU/mmHg). On the contrary, phase decreased linearly as a function of HR, which indicated the presence of a fixed time delay (97 ± 6 ms) between AP and RSNA. In conclusion, the dynamic properties of arterial baroreflex pathways do not affect the gain of the transfer function between AP and RSNA measured at HR frequency in the upper part of the physiological range of HR variations in the rat.


1999 ◽  
Vol 86 (4) ◽  
pp. 1236-1246 ◽  
Author(s):  
Ling Chen ◽  
Anthony L. Sica ◽  
Steven M. Scharf

This study was designed to evaluate the importance of sympathoadrenal activation in the acute cardiovascular response to apneas and the role of hypoxemia in this response. In addition, we evaluated the contribution of the vagus nerve to apnea responses after chemical sympathectomy. In six pigs preinstrumented with an electromagnetic flow probe and five nonpreinstrumented pigs, effects of periodic nonobstructive apneas were tested under the following six conditions: room air breathing, 100% O2 supplementation, both repeated after administration of hexamethonium (Hex), and both repeated again after bilateral vagotomy in addition to Hex. With room air apneas, during the apnea cycle, there were increases in mean arterial pressure (MAP; from baseline of 108 ± 4 to 124 ± 6 Torr, P < 0.01), plasma norepinephrine (from 681 ± 99 to 1,825 ± 578 pg/ml, P < 0.05), and epinephrine (from 191 ± 67 to 1,245 ± 685 pg/ml, P < 0.05) but decreases in cardiac output (CO; from 3.3 ± 0.6 to 2.4 ± 0.3 l/min, P < 0.01) and cervical sympathetic nerve activity. With O2supplementation relative to baseline, apneas were associated with small increases in MAP (from 112 ± 4 to 118 ± 3 Torr, P < 0.01) and norepinephrine (from 675 ± 97 to 861 ± 170 pg/ml, P< 0.05). After Hex, apneas with room air were associated with small increases in MAP (from 103 ± 6 to 109 ± 6 Torr, P < 0.05) and epinephrine (from 136 ± 45 to 666 ± 467 pg/ml, P < 0.05) and decreases in CO (from 3.6 ± 0.4 to 3.2 ± 0.5 l/min, P < 0.05). After Hex, apneas with O2 supplementation were associated with decreased MAP (from 107 ± 5 to 100 ± 5 Torr, P < 0.05) and no other changes. After vagotomy + Hex, with room air and O2 supplementation, apneas were associated with decreased MAP (from 98 ± 6 to 76 ± 7 and from 103 ± 7 to 95 ± 6 Torr, respectively, both P < 0.01) but increased CO [from 2.7 ± 0.3 to 3.2 ± 0.4 l/min ( P < 0.05) and from 2.4 ± 0.2 to 2.7 ± 0.2 l/min ( P < 0.01), respectively]. We conclude that sympathoadrenal activation is the major pressor mechanism during apneas. Cervical sympathetic nerve activity does not reflect overall sympathoadrenal activity during apneas. Hypoxemia is an important but not the sole trigger factor for sympathoadrenal activation. There is an important vagally mediated reflex that contributes to the pressor response to apneas.


1997 ◽  
Vol 272 (5) ◽  
pp. H2446-H2452 ◽  
Author(s):  
H. Miyano ◽  
T. Kawada ◽  
T. Shishido ◽  
T. Sato ◽  
M. Sugimachi ◽  
...  

The purpose of this investigation was to examine the role of nitric oxide (NO) in the dynamic baroreflex regulation of cardiac sympathetic nerve activity. In anesthetized rabbits, we imposed random pressure perturbations on the isolated carotid sinuses before and after the intravenous administration of NG-monomethyl-L-arginine. We characterized the dynamic properties relating carotid sinus pressure input to sympathetic nerve activity by means of a transfer function analysis. NG-monomethyl-L-arginine decreased the corner frequency of the transfer function (0.100 +/- 0.054 vs. 0.074 +/- 0.035 Hz; P < 0.05), whereas other parameters such as the steady-state gain and transmission lag time remained unchanged. Although cursory examination of these findings would suggest a possible contribution of NO in the dynamic baroreflex regulation of sympathetic nerve activity, quantitative assessment of the transfer function reveals only a minimal effect on the baroreflex regulation of arterial pressure, particularly under closed-loop conditions. We conclude that NO noticeably affects the dynamic baroreflex regulation of sympathetic nerve activity. However, it may not significantly affect arterial pressure regulation through central modulation of the carotid sinus baroreflex.


2001 ◽  
Vol 281 (1) ◽  
pp. R206-R212 ◽  
Author(s):  
Sarah-Jane Guild ◽  
Paul C. Austin ◽  
Michael Navakatikyan ◽  
John V. Ringwood ◽  
Simon C. Malpas

Blood pressure displays an oscillation at 0.1 Hz in humans that is well established to be due to oscillations in sympathetic nerve activity (SNA). However, the mechanisms that control the strength or frequency of this oscillation are poorly understood. The aim of the present study was to define the dynamic relationship between SNA and the vasculature. The sympathetic nerves to the kidney were electrically stimulated in six pentobarbital-sodium anesthetized rabbits, and the renal blood flow response was recorded. A pseudo-random binary sequence (PRBS) was applied to the renal nerves, which contains equal spectral power at frequencies in the range of interest (<1 Hz). Transfer function analysis revealed a complex system composed of low-pass filter characteristics but also with regions of constant gain. A model was developed that accounted for this relationship composed of a 2 zero/4 pole transfer function. Although the position of the poles and zeros varied among animals, the model structure was consistent. We also found the time delay between the stimulus and the RBF responses to be consistent among animals (mean 672 ± 22 ms). We propose that the identification of the precise relationship between SNA and renal blood flow (RBF) is a fundamental and necessary step toward understanding the interaction between SNA and other physiological mediators of RBF.


2011 ◽  
Vol 111 (6) ◽  
pp. 1854-1862 ◽  
Author(s):  
Nicholas A. Mischel ◽  
Patrick J. Mueller

The negative effects of sympathetic overactivity on long-term cardiovascular health are becoming increasingly clear. Moreover, recent work done in animal models of cardiovascular disease suggests that sympathetic tone to the splanchnic vasculature may play an important role in the development and maintenance of these disease states. Work from our laboratory and others led us to hypothesize that a lack of chronic physical activity increases resting and reflex-mediated splanchnic sympathetic nerve activity, possibly through changes occurring in a key brain stem center involved in sympathetic regulation, the rostral ventrolateral medulla (RVLM). To address this hypothesis, we recorded mean arterial pressure (MAP) and splanchnic sympathetic nerve activity (SSNA) in a group of active and sedentary animals that had been housed for 10–13 wk with or without running wheels, respectively. In experiments performed under Inactin anesthesia, we tested responses to RVLM microinjections of glutamate, responses to baroreceptor unloading, and vascular reactivity, the latter of which was performed under conditions of autonomic blockade. Sedentary animals exhibited enhanced resting SSNA and MAP, augmented increases in SSNA to RVLM activation and baroreceptor unloading, and enhanced vascular reactivity to α1-receptor mediated vasoconstriction. Our results suggest that a sedentary lifestyle increases the risk of cardiovascular disease by augmenting resting and reflex-mediated sympathetic output to the splanchnic circulation and also by increasing vascular sensitivity to adrenergic stimulation. We speculate that regular physical exercise offsets or reverses the progression of these disease processes via similar or disparate mechanisms and warrant further examination into physical (in)activity-induced sympathetic nervous system plasticity.


2007 ◽  
Vol 293 (5) ◽  
pp. R1938-R1946 ◽  
Author(s):  
Roy Kanbar ◽  
Valérie Oréa ◽  
Bruno Chapuis ◽  
Christian Barrès ◽  
Claude Julien

The present study examined whether the gain of the transfer function relating cardiac-related rhythm of renal sympathetic nerve activity (RSNA) to arterial pressure (AP) pulse might serve as a spontaneous index of sympathetic baroreflex sensitivity (BRS). AP and RSNA were simultaneously recorded in conscious rats, either baroreceptor-intact (control, n = 11) or with partial denervation of baroreflex afferents [aortic baroreceptor denervated (ABD; n = 10)] during 1-h periods of spontaneous activity. Transfer gain was calculated over 58 adjacent 61.4-s periods (segmented into 10.2-s periods). Coherence between AP and RSNA was statistically ( P < 0.05) significant in 90 ± 3% and 56 ± 10% of cases in control and ABD rats, respectively. Transfer gain was higher ( P = 0.0049) in control [2.39 ± 0.13 normalized units (NU)/mmHg] than in ABD (1.48 ± 0.22 NU/mmHg) rats. In the pooled study sample, transfer gain correlated with sympathetic BRS estimated by the vasoactive drug injection technique ( R = 0.75; P < 0.0001) and was inversely related to both time- (standard deviation; R = −0.74; P = 0.0001) and frequency-domain [total spectral power (0.00028–2.5 Hz); R = −0.82; P < 0.0001] indices of AP variability. In control rats, transfer gain exhibited large fluctuations (coefficient of variation: 34 ± 3%) that were not consistently related to changes in the mean level of AP, heart rate, or RSNA. In conclusion, the transfer function method provides a continuous, functionally relevant index of sympathetic BRS and reveals that the latter fluctuates widely over time.


1993 ◽  
Vol 264 (3) ◽  
pp. H872-H880 ◽  
Author(s):  
T. Imaizumi ◽  
M. Sugimachi ◽  
Y. Harasawa ◽  
S. Ando ◽  
K. Sunagawa ◽  
...  

To examine the contribution of wall mechanics to dynamic properties of baroreceptors, we subdivided the transfer function of baroreceptors into two subsystems [aortic pressure to diameter and diameter to aortic depressor nerve activity (ANA)]. In six alpha-chloralose-anesthetized rabbits, we measured pressure, diameter, and ANA while randomly perturbing pressure. We obtained transfer functions (pressure to ANA, diameter to ANA, and pressure to diameter) by taking the ratio of crosspower spectrum to the input power spectrum (0.005–5 Hz). Below 3 Hz, the transfer function from pressure to ANA was nearly identical to that from diameter to ANA, whereas that from pressure to diameter was flat. Using transfer functions we could reproduce adaptation and hysteresis that were quantitatively similar between pressure-ANA transduction and diameter-ANA transduction. The pressure-diameter relationship was almost instantaneous and thus showed no hysteresis. In a second group of rabbits, the ratio of the shift of the hysteresis loop was unchanged by ouabain (40 micrograms/kg iv, n = 7). We conclude that the dynamic properties of baroreceptors may not be related to the wall mechanics or the Na(+)-K(+)-adenosinetriphosphatase activity.


1979 ◽  
Vol 237 (1) ◽  
pp. R39-R44 ◽  
Author(s):  
R. D. Bunag ◽  
K. Takeda

The possible occurrence of central sympathetic dysfunction during development of spontaneous hypertension was studied by recording aortic pressure and sympathetic nerve activity concurrently during electrical stimulation of the posterior hypothalamus in 9-wk-old Kyoto-Wistar rats. Even at this early age, basal levels for both measurements were already elevated significantly in those with spontaneous hypertension. Increases in sympathetic neural firing induced by graded hypothalamic stimulation were always followed by corresponding increases in blood pressure; magnitude of both effects was appreciably larger in spontaneously hypertensive than in normotensive rats, as was the vasodepression caused by blocking autonomic ganglia with pentolinium. By contrast, pressor responses to injected norepinephrine were almost equal thereby suggesting that cardiovascular reactivity was unaltered and that enhanced responsiveness to hypothalamic stimulation was directly due to the concomitant increase in sympathetic nerve activity. Although the exact site from which sympathetic hyperactivity originates was unidentified, our results support the interpretation that sympathetic mechanisms involving the posterior hypothalamus participate in elevating blood pressure during development of spontaneous hypertension in rats.


2005 ◽  
Vol 289 (4) ◽  
pp. H1604-H1609 ◽  
Author(s):  
Kenta Yamamoto ◽  
Toru Kawada ◽  
Atsunori Kamiya ◽  
Hiroshi Takaki ◽  
Masaru Sugimachi ◽  
...  

Elucidation of the interaction between the muscle mechanoreflex and the arterial baroreflex is essential for better understanding of sympathetic regulation during exercise. We characterized the effects of these two reflexes on sympathetic nerve activity (SNA) in anesthetized rabbits ( n = 7). Under open-loop baroreflex conditions, we recorded renal SNA at carotid sinus pressure (CSP) of 40, 80, 120, or 160 mmHg while passively stretching the hindlimb muscle at muscle tension (MT) of 0, 2, 4, or 6 kg. The MT-SNA relationship at CSP of 40 mmHg approximated a straight line. Increase in CSP from 40 to 120 and 160 mmHg shifted the MT-SNA relationship downward and reduced the response range (the difference between maximum and minimum SNA) to 43 ± 10% and 19 ± 6%, respectively ( P < 0.01). The CSP-SNA relationship at MT of 0 kg approximated a sigmoid curve. Increase in MT from 0 to 2, 4, and 6 kg shifted the CSP-SNA relationship upward and extended the response range to 133 ± 8%, 156 ± 14%, and 178 ± 15%, respectively ( P < 0.01). A model of algebraic summation, i.e., parallel shift, with a threshold of SNA functionally reproduced the interaction of the two reflexes ( y = 1.00 x − 0.01; r2 = 0.991, root mean square = 2.6% between estimated and measured SNA). In conclusion, the response ranges of SNA to baroreceptor and muscle mechanoreceptor input changed in a manner that could be explained by a parallel shift with threshold.


Sign in / Sign up

Export Citation Format

Share Document