scholarly journals Cardiovascular responses to dynamic exercise with acute anemia in humans

1997 ◽  
Vol 273 (4) ◽  
pp. H1787-H1793 ◽  
Author(s):  
Maria D. Koskolou ◽  
Robert C. Roach ◽  
José A. L. Calbet ◽  
Göran Rådegran ◽  
Bengt Saltin

We hypothesized that reducing arterial O2 content ([Formula: see text]) by lowering the hemoglobin concentration ([Hb]) would result in a higher blood flow, as observed with a low [Formula: see text], and maintenance of O2 delivery. Seven young healthy men were studied twice, at rest and during two-legged submaximal and peak dynamic knee extensor exercise in a control condition (mean control [Hb] 144 g/l) and after 1–1.5 liters of whole blood had been withdrawn and replaced with albumin {mean drop in [Hb] 29 g/l (range 19–38 g/l); low [Hb]}. Limb blood flow (LBF) was higher ( P < 0.01) with low [Hb] during submaximal exercise (i.e., at 30 W, LBF was 2.5 ± 0.1 and 3.0 ± 0.1 l/min for control [Hb] and low [Hb], respectively; P < 0.01), resulting in a maintained O2 delivery and O2 uptake for a given workload. However, at peak exercise, LBF was unaltered (6.5 ± 0.4 and 6.6 ± 0.6 l/min for control [Hb] and low [Hb], respectively), which resulted in an 18% reduction in O2 delivery ( P < 0.01). This occurred despite peak cardiac output in neither condition reaching >75% of maximal cardiac output (∼26 l/min). It is concluded that a low CaO2 induces an elevation in submaximal muscle blood flow and that O2 delivery to contracting muscles is tightly regulated.

1986 ◽  
Vol 64 (11) ◽  
pp. 1442-1446 ◽  
Author(s):  
S. M. Villeneuve ◽  
C. K. Chapler ◽  
C. E. King ◽  
S. M. Cain

The importance of α-adrenergic receptors in the cardiac output and peripheral circulatory responses to carbon monoxide (CO) hypoxia was studied in anesthetized dogs. Phenoxybenzamine (3 mg/kg i.v.) was injected to block α-receptor activity and the data obtained were then compared with those from a previous study of CO hypoxia in unblocked animals. Values for cardiac output, hindlimb blood flow, vascular resistance, and oxygen uptake were obtained prior to and at 30 and 60 min of CO hypoxia which reduced arterial oxygen content by approximately 50%. α-Adrenergic blockade resulted in a lower (p < 0.05) control value for cardiac output than observed in unblocked animals, but no differences were present between the two groups at 30 or 60 min of CO hypoxia. Similarly, limb blood flow was lower (p < 0.05) during the control period in the α-blocked group but rose to the same level as that in the unblocked animals at 60 min of COH. No change in limb blood flow occurred during CO hypoxia in the unblocked group. These findings demonstrated that during CO hypoxia (i) α-receptor mediated venoconstriction does not contribute to the cardiac output response and (ii) α-receptor mediated vasoconstriction probably does prevent a rise in hindlimb skeletal muscle blood flow.


1995 ◽  
Vol 79 (5) ◽  
pp. 1762-1768 ◽  
Author(s):  
C. R. Woodman ◽  
L. A. Sebastian ◽  
C. M. Tipton

Rats exposed to simulated conditions of microgravity by head-down suspension (HDS) exhibit reductions in aerobic capacity. This may be due to an impaired ability to augment cardiac output and to redistribute blood flow during exercise. The purpose of this investigation was to measure cardiac output and blood flow distribution in rats that were exposed to 14 days of HDS or cage control conditions. Measurements were obtained at rest and during light-intensity (15 m/min) and heavy-intensity (25 m/min; 10% grade) treadmill exercise. Cardiac output was similar in HDS and cage control rats at rest and light exercise but was significantly lower in HDS rats (-33%) during heavy exercise. Soleus muscle blood flow (ml/min) was lower at rest and during exercise in HDS rats; however, when expressed relative to muscle mass (ml.min-1.100 g-1), soleus blood flow was lower only during light exercise. Plantaris muscle blood flow was lower in HDS rats during heavy exercise. Blood flow to the ankle flexor, knee extensor, and knee flexor muscles was not altered by HDS. Blood flow to the spleen and kidney was significantly higher in HDS rats. It was concluded that the reduction in aerobic capacity associated with HDS is due in part to an impaired ability to augment cardiac output during exercise.


2007 ◽  
Vol 292 (1) ◽  
pp. H580-H592 ◽  
Author(s):  
Jordan D. Miller ◽  
Curtis A. Smith ◽  
Sarah J. Hemauer ◽  
Jerome A. Dempsey

We sought to determine whether the normal inspiratory intrathoracic pressures (PITP) produced during exercise contribute to the blunted cardiac output and locomotor limb blood flow responses observed in chronic heart failure (CHF). Five chronically instrumented dogs exercised on a treadmill at 2.5 mile/h at 5% grade while healthy or after the induction of tachycardia-induced CHF. We observed several key differences in the cardiovascular responses to changes in the inspiratory PITP excursion between health and CHF; namely, 1) removing ∼70% of the normally produced inspiratory PITP excursion during exercise (with 15 cmH2O inspiratory positive pressure ventilation) significantly reduced stroke volume (SV) in healthy animals by 5 ± 2% ( P < 0.05) but significantly increased SV and cardiac output (QTOT) in animals with CHF by 5 ± 1% ( P < 0.05); 2) doubling the magnitude of the inspiratory PITP excursion had no effect on SV or QTOT in healthy animals but significantly reduced steady-state QTOT and SV in animals with CHF by −4 ± 3% and −10 ± 3%, respectively; 3) removing the majority of the normally produced inspiratory PITP excursion had no effect on blood flow distribution in healthy animals but increased hindlimb blood flow (9 ± 3%, P < 0.05) out of proportion to the increases in QTOT; and 4) the only similarity between healthy and CHF animals was that increasing the inspiratory PITP excursion significantly reduced steady-state locomotor limb blood flow by 5 ± 2% and 6 ± 3%, respectively ( P < 0.05 for both). We conclude that 1) the normally produced inspiratory PITP excursions are required for a maximal SV response to submaximal exercise in healthy animals but detrimental to the SV and QTOT responses to submaximal exercise in CHF, 2) the respiratory muscle ergoreflex tonically restrains locomotor limb blood flow during submaximal exercise in CHF, and 3) excessive inspiratory muscle work further compromises cardiac function and blood flow distribution in both health and CHF.


1981 ◽  
Vol 60 (6) ◽  
pp. 653-658 ◽  
Author(s):  
M. M. Temmar ◽  
M. E. Safar ◽  
J. A. Levenson ◽  
J. M. Totomoukouo ◽  
A. Ch. Simon

1. Cardiac output, lower-limb blood flow, hepatic and renal blood flows were studied in 16 patients with borderline and 16 patients with sustained essential hypertension and compared with 16 age-matched control subjects. 2. In borderline hypertension cardiac output and lower-limb blood flow were significantly elevated, while hepatic and renal blood flows were within the normal range. Cardiac output and lower-limb blood flow were positively correlated. 3. In sustained hypertension cardiac output, lower-limb blood flow and hepatic blood flow were within the normal range. Renal blood flow was significantly reduced. Lower-limb blood flow was negatively correlated with mean arterial pressure. 4. If borderline hypertension is an early stage of fixed hypertension, the present study suggests that the changes in cardiac output observed in hypertension are mainly related to lower-limb (and muscle) blood flow.


1990 ◽  
Vol 69 (3) ◽  
pp. 830-836 ◽  
Author(s):  
M. C. Hogan ◽  
D. E. Bebout ◽  
A. T. Gray ◽  
P. D. Wagner ◽  
J. B. West ◽  
...  

In the present study we investigated the effects of carboxyhemoglobinemia (HbCO) on muscle maximal O2 uptake (VO2max) during hypoxia. O2 uptake (VO2) was measured in isolated in situ canine gastrocnemius (n = 12) working maximally (isometric twitch contractions at 5 Hz for 3 min). The muscles were pump perfused at identical blood flow, arterial PO2 (PaO2) and total hemoglobin concentration [( Hb]) with blood containing either 1% (control) or 30% HbCO. In both conditions PaO2 was set at 30 Torr, which produced the same arterial O2 contents, and muscle blood flow was set at 120 ml.100 g-1.min-1, so that O2 delivery in both conditions was the same. To minimize CO diffusion into the tissues, perfusion with HbCO-containing blood was limited to the time of the contraction period. VO2max was 8.8 +/- 0.6 (SE) ml.min-1.100 g-1 (n = 12) with hypoxemia alone and was reduced by 26% to 6.5 +/- 0.4 ml.min-1.100 g-1 when HbCO was present (n = 12; P less than 0.01). In both cases, mean muscle effluent venous PO2 (PVO2) was the same (16 +/- 1 Torr). Because PaO2 and PVO2 were the same for both conditions, the mean capillary PO2 (estimate of mean O2 driving pressure) was probably not much different for the two conditions, even though the O2 dissociation curve was shifted to the left by HbCO. Consequently the blood-to-mitochondria O2 diffusive conductance was likely reduced by HbCO.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 112 (4) ◽  
pp. 560-565 ◽  
Author(s):  
John McDaniel ◽  
Stephen J. Ives ◽  
Russell S. Richardson

Although a multitude of factors that influence skeletal muscle blood flow have been extensively investigated, the influence of muscle length on limb blood flow has received little attention. Thus the purpose of this investigation was to determine if cyclic changes in muscle length influence resting blood flow. Nine healthy men (28 ± 4 yr of age) underwent a passive knee extension protocol during which the subjects' knee joint was passively extended and flexed through 100–180° knee joint angle at a rate of 1 cycle per 30 s. Femoral blood flow, cardiac output (CO), heart rate (HR), stroke volume (SV), and mean arterial pressure (MAP) were continuously recorded during the entire protocol. These measurements revealed that slow passive changes in knee joint angle did not have a significant influence on HR, SV, MAP, or CO; however, net femoral blood flow demonstrated a curvilinear increase with knee joint angle ( r2 = 0.98) such that blood flow increased by ∼90% (125 ml/min) across the 80° range of motion. This net change in blood flow was due to a constant antegrade blood flow across knee joint angle and negative relationship between retrograde blood flow and knee joint angle ( r2 = 0.98). Thus, despite the absence of central hemodynamic changes and local metabolic factors, blood flow to the leg was altered by changes in muscle length. Therefore, when designing research protocols, researchers need to be cognizant of the fact that joint angle, and ultimately muscle length, influence limb blood flow.


2008 ◽  
Vol 104 (4) ◽  
pp. 1202-1210 ◽  
Author(s):  
Jordan A. Guenette ◽  
Ioannis Vogiatzis ◽  
Spyros Zakynthinos ◽  
Dimitrios Athanasopoulos ◽  
Maria Koskolou ◽  
...  

Measurement of respiratory muscle blood flow (RMBF) in humans has important implications for understanding patterns of blood flow distribution during exercise in healthy individuals and those with chronic disease. Previous studies examining RMBF in humans have required invasive methods on anesthetized subjects. To assess RMBF in awake subjects, we applied an indicator-dilution method using near-infrared spectroscopy (NIRS) and the light-absorbing tracer indocyanine green dye (ICG). NIRS optodes were placed on the left seventh intercostal space at the apposition of the costal diaphragm and on an inactive control muscle (vastus lateralis). The primary respiratory muscles within view of the NIRS optodes include the internal and external intercostals. Intravenous bolus injection of ICG allowed for cardiac output (by the conventional dye-dilution method with arterial sampling), RMBF, and vastus lateralis blood flow to be quantified simultaneously. Esophageal and gastric pressures were also measured to calculate the work of breathing and transdiaphragmatic pressure. Measurements were obtained in five conscious humans during both resting breathing and three separate 5-min bouts of constant isocapnic hyperpnea at 27.1 ± 3.2, 56.0 ± 6.1, and 75.9 ± 5.7% of maximum minute ventilation as determined on a previous maximal exercise test. RMBF progressively increased (9.9 ± 0.6, 14.8 ± 2.7, 29.9 ± 5.8, and 50.1 ± 12.5 ml·100 ml−1·min−1, respectively) with increasing levels of ventilation while blood flow to the inactive control muscle remained constant (10.4 ± 1.4, 8.7 ± 0.7, 12.9 ± 1.7, and 12.2 ± 1.8 ml·100 ml−1·min−1, respectively). As ventilation rose, RMBF was closely and significantly correlated with 1) cardiac output ( r = 0.994, P = 0.006), 2) the work of breathing ( r = 0.995, P = 0.005), and 3) transdiaphragmatic pressure ( r = 0.998, P = 0.002). These data suggest that the NIRS-ICG technique provides a feasible and sensitive index of RMBF at different levels of ventilation in humans.


PEDIATRICS ◽  
1985 ◽  
Vol 76 (6) ◽  
pp. 918-921
Author(s):  
Frans J. Walther ◽  
Paul Y. K. Wu ◽  
Bijan Siassi

Phototherapy is known to increase peripheral blood flow in neonates, but information on the associated cardiovascular effects is not available. Using pulsed Doppler echocardiography we evaluated cardiac output and stroke volume in 12 preterm and 13 term neonates during and after phototherapy. We concomitantly measured arterial limb blood flow by strain gauge plethysmography and skin blood flow by photoplethysmography. Cardiac output decreased by 6% due to reduced stroke volume during phototherapy, whereas total limb blood flow and skin blood flow increased by 38% and 41%, respectively. Peripheral blood flow increments tended to be higher in the preterm than in the term infants. The reduced stroke volume during phototherapy may be an expression of reduced activity of the newborn during phototherapy. For healthy neonates the reduction in cardiac output is minimal, but for sick infants with reduced cardiac output, this reduction may further aggravate the decrease in tissue perfusion.


1987 ◽  
Vol 62 (3) ◽  
pp. 1285-1298 ◽  
Author(s):  
R. B. Armstrong ◽  
M. D. Delp ◽  
E. F. Goljan ◽  
M. H. Laughlin

The purpose of this study was to determine how the distribution of blood flow within and among the skeletal muscles of miniature swine (22 +/- 1 kg body wt) varies as a function of treadmill speed. Radiolabeled microspheres were used to measure cardiac output (Q) and tissue blood flows in preexercise and at 3–5 min of treadmill exercise at 4.8, 8.0, 11.3, 14.5, and 17.7 km/h. All pigs (n = 8) attained maximal O2 consumption (VO2max) (60 +/- 4 ml X min-1 X kg-1) by the time they ran at 17.7 km/h. At VO2max, 87% of Q (9.9 +/- 0.5 l/min) was to skeletal muscle, which constituted 36 +/- 1% of body mass. Average total muscle blood flow at VO2max was 127 +/- 14 ml X min-1 X 100 g-1; average limb muscle flow was 135 +/- 17 ml X min-1 X 100 g-1. Within the limb muscles, blood flow was distributed so that the deep red parts of extensor muscles had flows about two times higher than the more superficial white portions of the same muscles; the highest muscle blood flows occurred in the elbow flexors (brachialis: 290 +/- 44 ml X min-1 X 100 g-1). Peak exercise blood flows in the limb muscles were proportional (P less than 0.05) to the succinate dehydrogenase activities (r = 0.84), capillary densities (r = 0.78), and populations of oxidative (slow-twitch oxidative + fast-twitch oxidative-glycolytic) fiber types (r = 0.93) in the muscles. Total muscle blood flow plotted as a function of exercise intensity did not peak until the pigs attained VO2max, although flows in some individual muscles showed a plateau in this relationship at submaximal exercise intensities. The data demonstrate that blood flow in skeletal muscles of miniature swine is distributed heterogeneously and varies in relation to fiber type composition and exercise intensity.


1988 ◽  
Vol 65 (4) ◽  
pp. 1514-1519 ◽  
Author(s):  
M. Manohar

The present study was carried out 1) to compare blood flow in the costal and crural regions of the equine diaphragm during quiet breathing at rest and during graded exercise and 2) to determine the fraction of cardiac output needed to perfuse the diaphragm during near-maximal exercise. By the use of radionuclide-labeled 15-micron-diam microspheres injected into the left atrium, diaphragmatic and intercostal muscle blood flow was studied in 10 healthy ponies at rest and during three levels of exercise (moderate: 12 mph, heavy: 15 mph, and near-maximal: 19-20 mph) performed on a treadmill. At rest, in eucapnic ponies, costal (13 +/- 3 ml.min-1.100 g-1) and crural (13 +/- 2 ml.min-1.100 g-1) phrenic blood flows were similar, but the costal diaphragm received a much larger percentage of cardiac output (0.51 +/- 0.12% vs. 0.15 +/- 0.03% for crural diaphragm). Intercostal muscle perfusion at rest was significantly less than in either phrenic region. Graded exercise resulted in significant progressive increments in perfusion to these tissues. Although during exercise, crural diaphragmatic blood flow was not different from intercostal muscle blood flow, these values remained significantly less (P less than 0.01) than in the costal diaphragm. At moderate, heavy, and near-maximal exercise, costal diaphragmatic blood flow (123 +/- 12, 190 +/- 12, and 245 +/- 18 ml.min-1.100 g-1) was 143%, 162%, and 162%, respectively, of that for the crural diaphragm (86 +/- 10, 117 +/- 8, and 151 +/- 14 ml.min-1.100 g-1).(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document