ATP-stimulated smooth muscle cell proliferation requires independent ERK and PI3K signaling pathways

1998 ◽  
Vol 275 (4) ◽  
pp. H1209-H1215 ◽  
Author(s):  
Peter A. Wilden ◽  
Yehenew M. Agazie ◽  
Rebecca Kaufman ◽  
Stephen P. Halenda

Vascular smooth muscle cells respond to the purinergic agonist ATP by increasing intracellular calcium concentration and increasing the rate of cell proliferation. In many cells the extracellular signal-regulated kinase (ERK) cascade plays an important role in cellular proliferation. We have studied the effect of extracellular ATP on ERK activation and cell proliferation. ATP binding to a UTP-sensitive P2Y nucleotide receptor activates ERK1/ERK2 in a time- and dose-dependent manner in coronary artery smooth muscle cells (CASMC). ATP-induced activation of ERK1/ERK2 is dependent on the dual-specificity kinase mitogen-activated protein kinase/ERK kinase (i.e., MEK) but independent of phosphatidylinositol 3-kinase (PI3K) activity. We provide evidence that both ERK1/ERK2 and PI3K activities are required for CASMC proliferation. Thus ATP-stimulation of CASMC proliferation requires independent activation of both the ERK and PI3K signaling pathways.

2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Astrid Kehlen ◽  
Monique Haegele ◽  
Livia Böhme ◽  
Holger Cynis ◽  
Torsten Hoffmann ◽  
...  

CX3CL1 (fractalkine) is a unique member of the CX3C chemokine family and mediates both adhesion and cell migration in inflammatory processes. Frequently, the activity of chemokines depends on a modified N-terminus as described for the N-terminus of CCL2 modified to a pGlu- (pyroglutamate) residue by QC (glutaminyl cyclase) activity. Here, we assess the role of the pGlu-modified residue of the CX3CL1 chemokine domain in human endothelial and smooth muscle cells. For the first time, we demonstrated using MS that QC (QPCT, gene name of QC) or its isoenzyme isoQC (iso-glutaminyl cyclase) (QPCTL, gene name of isoQC) catalyse the formation of N-terminal-modified pGlu-CX3CL1. Expression of QPCT is co-regulated with its substrates CCL2 and CX3CL1 in HUVECs (human umbilical vein endothelial cells) and HCASMCs (human coronary artery smooth muscle cells) upon stimulation with TNF-α and IL-1β whereas QPCTL expression is not affected. By contrast, inhibition of the NF-κB pathway using an IKK2 inhibitor decreased the expression of the co-regulated targets QPCT, CCL2, and CX3CL1. Furthermore, RNAi-mediated inhibition of QPCT expression resulted in a reduction in CCL2 and CX3CL1 mRNA. In HCASMCs, N-terminal-modified pGlu1-CX3CL1 induced a significant stronger effect on phosphorylation of ERK (extracellular signal regulated kinase) 1/2, Akt (protein kinase B), and p38 (p38 mitogen-activated protein kinase) kinases than the immature Gln1-CX3CL1 in a time- and concentration-dependent manner. Furthermore, pGlu1-CX3CL1 affected the expression of CCL2, CX3CL1, and the adhesion molecule ICAM1/CD54 (intercellular adhesion molecule-1) inducing in higher expression level compared with its Gln1-variant in both HCASMCs and HUVECs. These results strongly suggest that QC-catalysed N-terminal pGlu formation of CX3CL1 is important for the stability or the interaction with its receptor and opens new insights into the function of QC in inflammation.


2001 ◽  
Vol 353 (3) ◽  
pp. 513-519 ◽  
Author(s):  
Christopher J. MacKENZIE ◽  
Jill M. WAKEFIELD ◽  
Fiona CAIRNS ◽  
Anna F. DOMINICZAK ◽  
Gwyn W. GOULD

We have studied the ability of cGMP and cAMP to modulate platelet-derived growth factor (PDGF)-stimulated 2-deoxy-d-glucose (deGlc) transport in primary cultures of vascular smooth muscle cells (VMSC) from rat aorta. PDGF stimulated deGlc transport in a time- and concentration-dependent manner. 8-Bromo-cGMP and atrial natriuretic peptide(1–28) [ANP(1–28)] were found to reduce PDGF-stimulated deGlc transport without affecting basal (unstimulated) transport activity. In contrast, 8-bromo-cAMP and dibutyryl-cAMP stimulated basal deGlc transport 2-fold and were without effect on PDGF-stimulated deGlc transport. 8-Bromo-cGMP also inhibited 8-bromo-cAMP-stimulated deGlc transport. The stimulation of deGlc transport by PDGF was sensitive to the mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) kinase (MEK) inhibitor PD98059, and we show that ERK1/2 was activated by PDGF. Neither 8-bromo-cGMP nor ANP(1–28) inhibited PDGF-stimulated ERK activation, suggesting that the effects of cGMP and ANP(1–28) were not mediated by inhibition of this kinase. Our data also argue against a role for cGMP-dependent protein kinase in mediating the effects of cGMP or ANP(1–28). Collectively, our data suggest that in VSMC: (i) cGMP and cAMP have opposing effects on deGlc transport; (ii) PDGF and cAMP have common elements in the pathways by which they activate deGlc transport; and (iii) a common element may be the target of the cGMP-mediated inhibition of deGlc transport.


Sign in / Sign up

Export Citation Format

Share Document