Deformation-induced ATP release from red blood cells requires CFTR activity

1998 ◽  
Vol 275 (5) ◽  
pp. H1726-H1732 ◽  
Author(s):  
Randy S. Sprague ◽  
Mary L. Ellsworth ◽  
Alan H. Stephenson ◽  
Mary E. Kleinhenz ◽  
Andrew J. Lonigro

Recently, it was reported that rabbit and human red blood cells (RBCs) release ATP in response to mechanical deformation. Here we investigate the hypothesis that the activity of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP binding cassette, is required for deformation-induced ATP release from RBCs. Incubation of rabbit RBCs with either of two inhibitors of CFTR activity, glibenclamide (10 μM) or niflumic acid (20 μM), resulted in inhibition of deformation-induced ATP release. To demonstrate the contribution of CFTR to deformation-induced ATP release from human RBCs, cells from healthy humans, patients with cystic fibrosis (CF), or patients with chronic obstructive lung disease (COPD) unrelated to CF were studied. RBCs of healthy humans and COPD patients released ATP in response to mechanical deformation. In contrast, deformation of RBCs from patients with CF did not result in ATP release. We conclude that deformation-induced ATP release from rabbit and human RBCs requires CFTR activity, suggesting a previously unrecognized role for CFTR in the regulation of vascular resistance.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ratnasekhar Ch ◽  
Guillaume Rey ◽  
Sandipan Ray ◽  
Pawan K. Jha ◽  
Paul C. Driscoll ◽  
...  

AbstractCircadian clocks coordinate mammalian behavior and physiology enabling organisms to anticipate 24-hour cycles. Transcription-translation feedback loops are thought to drive these clocks in most of mammalian cells. However, red blood cells (RBCs), which do not contain a nucleus, and cannot perform transcription or translation, nonetheless exhibit circadian redox rhythms. Here we show human RBCs display circadian regulation of glucose metabolism, which is required to sustain daily redox oscillations. We found daily rhythms of metabolite levels and flux through glycolysis and the pentose phosphate pathway (PPP). We show that inhibition of critical enzymes in either pathway abolished 24-hour rhythms in metabolic flux and redox oscillations, and determined that metabolic oscillations are necessary for redox rhythmicity. Furthermore, metabolic flux rhythms also occur in nucleated cells, and persist when the core transcriptional circadian clockwork is absent in Bmal1 knockouts. Thus, we propose that rhythmic glucose metabolism is an integral process in circadian rhythms.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Kelly Thuet ◽  
Elizabeth Bowles ◽  
Meera Sridharan ◽  
Shaquria Adderley ◽  
Randy Sprague ◽  
...  

1976 ◽  
Vol 144 (6) ◽  
pp. 1695-1700 ◽  
Author(s):  
D Guerry ◽  
M A Kenna ◽  
A D Schrieber ◽  
R A Cooper

Human red blood cells sensitized with concanavalin A became bound to homologous peripheral blood monocytes. Binding occured at a concentration of 10(5) molecules of tetrameric Con A per red blood cell (RBC) and increased with additional Con A. RBC binding began within 5 min and was maximal at 90 min. Phagocytosis of sensitized RBCs was minimal. RBC attachment was prevented by 0.01 M alpha-methyl-D-mannopyranoside, and, once the RBC-monocyte rosette was established, bound RBCs were largely removed with this specific saccharide inhibitor of Con A. RBCs attached to monocytes became spherocytic and osmotically fragile. The recognition of concanavalin A (Con A)-coated RBCs was not mediated through the monocyte IgG-Fc receptor. These studies demonstrate that, like IgG and C3b, Con A is capable of mediating the binding of human RBCs to human monocytes. Red cells so bound are damaged at the monocyte surface.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1576-1576
Author(s):  
Martin L. Olsson ◽  
Lingwei Wang ◽  
Goran Olivecrona ◽  
Matthias Gotberg ◽  
Stefan Amisten ◽  
...  

Abstract Background: Red blood cells regulate tissue circulation and O2 delivery by releasing the vasodilator adenosine triphosphate (ATP) in response to hypoxia. When released extracellularly, ATP is rapidly degraded to adenosine diphosphate (ADP) in the circulation by ectonucleotidases. ATP and ADP activate subtypes of the large P2 receptor family (15 subtypes). Here we show that ADP acting on P2Y13 receptors on red blood cells serves as a negative feedback pathway for the inhibition of ATP release. Methods: mRNA was quantified with real-time PCR. Western blot was used to detect P2 receptors with available antibodies. cAMP levels were determined with an enzyme immunoassay. ATP release was measured in incubated red blood cells using microdialysis and a luciferase assay. In a pig model, catheters were inserted through the carotid artery to place a catheter in the left coronary artery, and through the jugular vein to place a microdialysis probe in the coronary vein. 2-MeSADP was injected in the artery and ATP levels were measured in the coronary vein. Results: mRNA of the ADP receptor P2Y13 was highly expressed in human red blood cells and reticulocytes, whilst other ADP receptors were not (Fig.1). Figure Figure The stable ADP analogue 2-MeSADP decreased ATP release from red blood cells by inhibition of cAMP. The P2Y12 and P2Y13 receptor antagonist AR-C67085 (30 mM), but not the P2Y1 blocker MRS2179, inhibited the effects of 2-MeSADP. At doses where AR-C67085 only blocks P2Y12 (100 nM), it had no effect. AR-C67085 and the nucleotidase apyrase increased cAMP per se, indicating a constant cAMP inhibitory effect of endogenous extracellular ADP. 2-MeSADP reduced plasma ATP concentrations in an in vivo pig model. Furthermore, a missense polymorphism in the coding region of P2Y13 has been found that is in total disequilibrium with 5 polymorphisms in P2Y12 (the important ADP receptor in platelets) forming a haplotype that could contribute to vascular disease. Conclusion: Our results show that P2Y13 is selectively expressed in human red blood cells. The ATP degradation product ADP inhibited ATP release by acting on this receptor. This negative feedback system could be important in the control of plasma ATP levels and tissue circulation. Because blood consists of approximately 40% red blood cells, containing a 1000-fold higher ATP concentration than plasma (mM vs. uM), even a minor release of ATP from the high intracellular concentrations could have major circulatory effects. A negative system may therefore be of great physiological importance to mitigate ATP release. In addition, this finding could be of interest for efforts to preserve intracellular ATP in red blood cells during storage.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4803-4803
Author(s):  
Elizabeth Bowles ◽  
Randy Sprague ◽  
Nuran Ercal

Abstract Pulmonary arterial hypertension (PAH) is characterized by high pulmonary vascular resistance (PVR) and right heart failure. Red blood cells (RBCs) of PAH patients fail to release the vasodilator, adenosine triphosphate (ATP), when deformed as would occur when traversing the lung. Such a defect could contribute to increased PVR. However, RBCs of PAH patients do release ATP in response to prostacyclin (PGI2) analogs and this is augmented by phosphodiesterase 5 (PDE5) inhibitors. Current PAH treatment includes PGI2 analogs and PDE5 inhibitors alone or in combination. Unfortunately, these drugs can have untoward side effects. Encapsulation of drugs within liposomes (small lipid-membraned vesicles) that can be targeted to RBCs has been shown to increase effectiveness and tolerability of some medications. The objective of this study was to determine if encapsulation of the PDE5 inhibitor zaprinast (ZAP) within liposomes is an effective means to deliver this class of drugs to human RBCs and if this approach would augment ATP release stimulated by the PGI2 analog UT-15c. Human RBCs were isolated and incubated with either blank liposomes (n=10), liposomes containing ZAP (n=9) or liposomes containing the PDE3 inhibitor, cilosatzol (CILO, n=10). RBCs (20% hematocrit) were then treated with UT-15c (1 µM). ATP release was measured before and 5, 10, and 15 min after the addition of UT-15c. In the presence of empty liposomes, the dose of UT-15c used did not stimulate ATP release. However, UT-15c did stimulate ATP release from RBCs pretreated with ZAP encapsulated by liposomes (P<0.01). The average time for maximal release was 9 ± 1 min. In contrast, when exposed to liposomes containing CILO, there was no ATP release following UT-15c administration. These studies demonstrate that the selective delivery of a PDE5 inhibitor to human RBCs potentiates UT-15c induced ATP release. Moreover the findings are consistent with the hypothesis that directed delivery of this class of drugs to PAH RBCs could be a new and important method to augment PGI2 analog-induced ATP release from these cells. Such an approach could significantly limit side effects of both drugs without compromise of their therapeutic effectiveness in PAH. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 8 (11) ◽  
pp. 1918 ◽  
Author(s):  
Daniele Dondossola ◽  
Alessandro Santini ◽  
Caterina Lonati ◽  
Alberto Zanella ◽  
Riccardo Merighi ◽  
...  

Ex-situ machine perfusion (MP) has been increasingly used to enhance liver quality in different settings. Small animal models can help to implement this procedure. As most normothermic MP (NMP) models employ sub-physiological levels of oxygen delivery (DO2), the aim of this study was to investigate the effectiveness and safety of different DO2, using human red blood cells (RBCs) as oxygen carriers on metabolic recovery in a rat model of NMP. Four experimental groups (n = 5 each) consisted of (1) native (untreated/control), (2) liver static cold storage (SCS) 30 min without NMP, (3) SCS followed by 120 min of NMP with Dulbecco-Modified-Eagle-Medium as perfusate (DMEM), and (4) similar to group 3, but perfusion fluid was added with human RBCs (hematocrit 15%) (BLOOD). Compared to DMEM, the BLOOD group showed increased liver DO2 (p = 0.008) and oxygen consumption ( V O ˙ 2) (p < 0.001); lactate clearance (p < 0.001), potassium (p < 0.001), and glucose (p = 0.029) uptake were enhanced. ATP levels were likewise higher in BLOOD relative to DMEM (p = 0.031). V O ˙ 2 and DO2 were highly correlated (p < 0.001). Consistently, the main metabolic parameters were directly correlated with DO2 and V O ˙ 2. No human RBC related damage was detected. In conclusion, an optimized DO2 significantly reduces hypoxic damage-related effects occurring during NMP. Human RBCs can be safely used as oxygen carriers.


Blood ◽  
1994 ◽  
Vol 83 (11) ◽  
pp. 3339-3345 ◽  
Author(s):  
AH Chishti ◽  
GJ Maalouf ◽  
S Marfatia ◽  
J Palek ◽  
W Wang ◽  
...  

The composition of the erythrocyte plasma membrane is extensively modified during the intracellular growth of the malaria parasite Plasmodium falciparum. It has been previously shown that an 80-kD phosphoprotein is associated with the plasma membrane of human red blood cells (RBCs) infected with trophozoite/schizont stage malaria parasites. However, the identity of this 80-kD phosphoprotein is controversial. One line of evidence suggests that this protein is a phosphorylated form of RBC protein 4.1 and that it forms a tight complex with the mature parasite-infected erythrocyte surface antigen. In contrast, evidence from another group indicates that the 80-kD protein is derived from the intracellular malaria parasite. To resolve whether the 80-kD protein is indeed RBC protein 4.1, we made use of RBCs obtained from a patient with homozygous 4.1(-) negative hereditary elliptocytosis. RBCs from this patient are completely devoid of protein 4.1. We report here that this lack of protein 4.1 is correlated with the absence of phosphorylation of the 80-kD protein in parasite- infected RBCs, a finding that provides conclusive evidence that the 80- kD phosphoprotein is indeed protein 4.1. In addition, we also identify and partially characterize a casein kinase that phosphorylates protein 4.1 in P falciparum-infected human RBCs. Based on these results, we suggest that the maturation of malaria parasites in human RBCs is accompanied by the phosphorylation of protein 4.1. This phosphorylation of RBC protein 4.1 may provide a mechanism by which the intracellular malaria parasite alters the mechanical properties of the host plasma membrane and modulates parasite growth and survival in vivo.


The Analyst ◽  
2018 ◽  
Vol 143 (18) ◽  
pp. 4335-4346 ◽  
Author(s):  
Jakub Dybas ◽  
Piotr Berkowicz ◽  
Bartosz Proniewski ◽  
Katarzyna Dziedzic-Kocurek ◽  
Jan Stanek ◽  
...  

The work presents the complementary approach to characterize the formation of various Hb species inside isolated human RBCs exposed to NO, with a focus on the formed Hb–NO adducts.


Blood ◽  
1994 ◽  
Vol 83 (11) ◽  
pp. 3339-3345 ◽  
Author(s):  
AH Chishti ◽  
GJ Maalouf ◽  
S Marfatia ◽  
J Palek ◽  
W Wang ◽  
...  

Abstract The composition of the erythrocyte plasma membrane is extensively modified during the intracellular growth of the malaria parasite Plasmodium falciparum. It has been previously shown that an 80-kD phosphoprotein is associated with the plasma membrane of human red blood cells (RBCs) infected with trophozoite/schizont stage malaria parasites. However, the identity of this 80-kD phosphoprotein is controversial. One line of evidence suggests that this protein is a phosphorylated form of RBC protein 4.1 and that it forms a tight complex with the mature parasite-infected erythrocyte surface antigen. In contrast, evidence from another group indicates that the 80-kD protein is derived from the intracellular malaria parasite. To resolve whether the 80-kD protein is indeed RBC protein 4.1, we made use of RBCs obtained from a patient with homozygous 4.1(-) negative hereditary elliptocytosis. RBCs from this patient are completely devoid of protein 4.1. We report here that this lack of protein 4.1 is correlated with the absence of phosphorylation of the 80-kD protein in parasite- infected RBCs, a finding that provides conclusive evidence that the 80- kD phosphoprotein is indeed protein 4.1. In addition, we also identify and partially characterize a casein kinase that phosphorylates protein 4.1 in P falciparum-infected human RBCs. Based on these results, we suggest that the maturation of malaria parasites in human RBCs is accompanied by the phosphorylation of protein 4.1. This phosphorylation of RBC protein 4.1 may provide a mechanism by which the intracellular malaria parasite alters the mechanical properties of the host plasma membrane and modulates parasite growth and survival in vivo.


Sign in / Sign up

Export Citation Format

Share Document