scholarly journals Human Red Blood Cells as Oxygen Carriers to Improve Ex-Situ Liver Perfusion in a Rat Model

2019 ◽  
Vol 8 (11) ◽  
pp. 1918 ◽  
Author(s):  
Daniele Dondossola ◽  
Alessandro Santini ◽  
Caterina Lonati ◽  
Alberto Zanella ◽  
Riccardo Merighi ◽  
...  

Ex-situ machine perfusion (MP) has been increasingly used to enhance liver quality in different settings. Small animal models can help to implement this procedure. As most normothermic MP (NMP) models employ sub-physiological levels of oxygen delivery (DO2), the aim of this study was to investigate the effectiveness and safety of different DO2, using human red blood cells (RBCs) as oxygen carriers on metabolic recovery in a rat model of NMP. Four experimental groups (n = 5 each) consisted of (1) native (untreated/control), (2) liver static cold storage (SCS) 30 min without NMP, (3) SCS followed by 120 min of NMP with Dulbecco-Modified-Eagle-Medium as perfusate (DMEM), and (4) similar to group 3, but perfusion fluid was added with human RBCs (hematocrit 15%) (BLOOD). Compared to DMEM, the BLOOD group showed increased liver DO2 (p = 0.008) and oxygen consumption ( V O ˙ 2) (p < 0.001); lactate clearance (p < 0.001), potassium (p < 0.001), and glucose (p = 0.029) uptake were enhanced. ATP levels were likewise higher in BLOOD relative to DMEM (p = 0.031). V O ˙ 2 and DO2 were highly correlated (p < 0.001). Consistently, the main metabolic parameters were directly correlated with DO2 and V O ˙ 2. No human RBC related damage was detected. In conclusion, an optimized DO2 significantly reduces hypoxic damage-related effects occurring during NMP. Human RBCs can be safely used as oxygen carriers.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ratnasekhar Ch ◽  
Guillaume Rey ◽  
Sandipan Ray ◽  
Pawan K. Jha ◽  
Paul C. Driscoll ◽  
...  

AbstractCircadian clocks coordinate mammalian behavior and physiology enabling organisms to anticipate 24-hour cycles. Transcription-translation feedback loops are thought to drive these clocks in most of mammalian cells. However, red blood cells (RBCs), which do not contain a nucleus, and cannot perform transcription or translation, nonetheless exhibit circadian redox rhythms. Here we show human RBCs display circadian regulation of glucose metabolism, which is required to sustain daily redox oscillations. We found daily rhythms of metabolite levels and flux through glycolysis and the pentose phosphate pathway (PPP). We show that inhibition of critical enzymes in either pathway abolished 24-hour rhythms in metabolic flux and redox oscillations, and determined that metabolic oscillations are necessary for redox rhythmicity. Furthermore, metabolic flux rhythms also occur in nucleated cells, and persist when the core transcriptional circadian clockwork is absent in Bmal1 knockouts. Thus, we propose that rhythmic glucose metabolism is an integral process in circadian rhythms.


1976 ◽  
Vol 144 (6) ◽  
pp. 1695-1700 ◽  
Author(s):  
D Guerry ◽  
M A Kenna ◽  
A D Schrieber ◽  
R A Cooper

Human red blood cells sensitized with concanavalin A became bound to homologous peripheral blood monocytes. Binding occured at a concentration of 10(5) molecules of tetrameric Con A per red blood cell (RBC) and increased with additional Con A. RBC binding began within 5 min and was maximal at 90 min. Phagocytosis of sensitized RBCs was minimal. RBC attachment was prevented by 0.01 M alpha-methyl-D-mannopyranoside, and, once the RBC-monocyte rosette was established, bound RBCs were largely removed with this specific saccharide inhibitor of Con A. RBCs attached to monocytes became spherocytic and osmotically fragile. The recognition of concanavalin A (Con A)-coated RBCs was not mediated through the monocyte IgG-Fc receptor. These studies demonstrate that, like IgG and C3b, Con A is capable of mediating the binding of human RBCs to human monocytes. Red cells so bound are damaged at the monocyte surface.


1998 ◽  
Vol 275 (5) ◽  
pp. H1726-H1732 ◽  
Author(s):  
Randy S. Sprague ◽  
Mary L. Ellsworth ◽  
Alan H. Stephenson ◽  
Mary E. Kleinhenz ◽  
Andrew J. Lonigro

Recently, it was reported that rabbit and human red blood cells (RBCs) release ATP in response to mechanical deformation. Here we investigate the hypothesis that the activity of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP binding cassette, is required for deformation-induced ATP release from RBCs. Incubation of rabbit RBCs with either of two inhibitors of CFTR activity, glibenclamide (10 μM) or niflumic acid (20 μM), resulted in inhibition of deformation-induced ATP release. To demonstrate the contribution of CFTR to deformation-induced ATP release from human RBCs, cells from healthy humans, patients with cystic fibrosis (CF), or patients with chronic obstructive lung disease (COPD) unrelated to CF were studied. RBCs of healthy humans and COPD patients released ATP in response to mechanical deformation. In contrast, deformation of RBCs from patients with CF did not result in ATP release. We conclude that deformation-induced ATP release from rabbit and human RBCs requires CFTR activity, suggesting a previously unrecognized role for CFTR in the regulation of vascular resistance.


2020 ◽  
Vol 22 (1) ◽  
pp. 235
Author(s):  
Silke B. Bodewes ◽  
Otto B. van Leeuwen ◽  
Adam M. Thorne ◽  
Bianca Lascaris ◽  
Rinse Ubbink ◽  
...  

Oxygenated ex situ machine perfusion of donor livers is an alternative for static cold preservation that can be performed at temperatures from 0 °C to 37 °C. Organ metabolism depends on oxygen to produce adenosine triphosphate and temperatures below 37 °C reduce the metabolic rate and oxygen requirements. The transport and delivery of oxygen in machine perfusion are key determinants in preserving organ viability and cellular function. Oxygen delivery is more challenging than carbon dioxide removal, and oxygenation of the perfusion fluid is temperature dependent. The maximal oxygen content of water-based solutions is inversely related to the temperature, while cellular oxygen demand correlates positively with temperature. Machine perfusion above 20 °C will therefore require an oxygen carrier to enable sufficient oxygen delivery to the liver. Human red blood cells are the most physiological oxygen carriers. Alternative artificial oxygen transporters are hemoglobin-based oxygen carriers, perfluorocarbons, and an extracellular oxygen carrier derived from a marine invertebrate. We describe the principles of oxygen transport, delivery, and consumption in machine perfusion for donor livers using different oxygen carrier-based perfusion solutions and we discuss the properties, advantages, and disadvantages of these carriers and their use.


Blood ◽  
1994 ◽  
Vol 83 (11) ◽  
pp. 3339-3345 ◽  
Author(s):  
AH Chishti ◽  
GJ Maalouf ◽  
S Marfatia ◽  
J Palek ◽  
W Wang ◽  
...  

The composition of the erythrocyte plasma membrane is extensively modified during the intracellular growth of the malaria parasite Plasmodium falciparum. It has been previously shown that an 80-kD phosphoprotein is associated with the plasma membrane of human red blood cells (RBCs) infected with trophozoite/schizont stage malaria parasites. However, the identity of this 80-kD phosphoprotein is controversial. One line of evidence suggests that this protein is a phosphorylated form of RBC protein 4.1 and that it forms a tight complex with the mature parasite-infected erythrocyte surface antigen. In contrast, evidence from another group indicates that the 80-kD protein is derived from the intracellular malaria parasite. To resolve whether the 80-kD protein is indeed RBC protein 4.1, we made use of RBCs obtained from a patient with homozygous 4.1(-) negative hereditary elliptocytosis. RBCs from this patient are completely devoid of protein 4.1. We report here that this lack of protein 4.1 is correlated with the absence of phosphorylation of the 80-kD protein in parasite- infected RBCs, a finding that provides conclusive evidence that the 80- kD phosphoprotein is indeed protein 4.1. In addition, we also identify and partially characterize a casein kinase that phosphorylates protein 4.1 in P falciparum-infected human RBCs. Based on these results, we suggest that the maturation of malaria parasites in human RBCs is accompanied by the phosphorylation of protein 4.1. This phosphorylation of RBC protein 4.1 may provide a mechanism by which the intracellular malaria parasite alters the mechanical properties of the host plasma membrane and modulates parasite growth and survival in vivo.


The Analyst ◽  
2018 ◽  
Vol 143 (18) ◽  
pp. 4335-4346 ◽  
Author(s):  
Jakub Dybas ◽  
Piotr Berkowicz ◽  
Bartosz Proniewski ◽  
Katarzyna Dziedzic-Kocurek ◽  
Jan Stanek ◽  
...  

The work presents the complementary approach to characterize the formation of various Hb species inside isolated human RBCs exposed to NO, with a focus on the formed Hb–NO adducts.


Blood ◽  
1994 ◽  
Vol 83 (11) ◽  
pp. 3339-3345 ◽  
Author(s):  
AH Chishti ◽  
GJ Maalouf ◽  
S Marfatia ◽  
J Palek ◽  
W Wang ◽  
...  

Abstract The composition of the erythrocyte plasma membrane is extensively modified during the intracellular growth of the malaria parasite Plasmodium falciparum. It has been previously shown that an 80-kD phosphoprotein is associated with the plasma membrane of human red blood cells (RBCs) infected with trophozoite/schizont stage malaria parasites. However, the identity of this 80-kD phosphoprotein is controversial. One line of evidence suggests that this protein is a phosphorylated form of RBC protein 4.1 and that it forms a tight complex with the mature parasite-infected erythrocyte surface antigen. In contrast, evidence from another group indicates that the 80-kD protein is derived from the intracellular malaria parasite. To resolve whether the 80-kD protein is indeed RBC protein 4.1, we made use of RBCs obtained from a patient with homozygous 4.1(-) negative hereditary elliptocytosis. RBCs from this patient are completely devoid of protein 4.1. We report here that this lack of protein 4.1 is correlated with the absence of phosphorylation of the 80-kD protein in parasite- infected RBCs, a finding that provides conclusive evidence that the 80- kD phosphoprotein is indeed protein 4.1. In addition, we also identify and partially characterize a casein kinase that phosphorylates protein 4.1 in P falciparum-infected human RBCs. Based on these results, we suggest that the maturation of malaria parasites in human RBCs is accompanied by the phosphorylation of protein 4.1. This phosphorylation of RBC protein 4.1 may provide a mechanism by which the intracellular malaria parasite alters the mechanical properties of the host plasma membrane and modulates parasite growth and survival in vivo.


2020 ◽  
Vol 20 (8) ◽  
pp. 1321-1327
Author(s):  
Saleh M. Abdullah ◽  
Hina Rashid

Background: Bisphenol A (BPA) is a xenobiotic that causes oxidative stress in various organs in living organisms. Blood cells are also an endpoint where BPA is known to cause oxidative stress. Blood cells, especially red blood cells (RBCs), are crucial for maintaining homeostasis and overall wellbeing of the organism. They are highly susceptible to oxidative stress induced by xenobiotics. However, there is limited data about the oxidative stress induced by BPA in blood, especially in red blood cells. This study was carried out to evaluate BPA induced oxidative stress in human RBCs in vitro and its amelioration by melatonin. Objective: To find if melatonin exerts a protective effect on the oxidative stress induced by the BPA in human red blood cells in vitro. Methods: The erythrocyte suspensions (2 ml) were divided into six groups and treated with 0, 50, 100, 150, 200, and 250 μg/ml of BPA. Another set of erythrocyte suspension with similar BPA treatment and 50 μM Melatonin per group was also set. Incubations lasted for 12 hrs in the dark. Lipid peroxidation, glutathione, glutathione reductase, catalase, and superoxide dismutase were measured as indicators of oxidative stress. Results: BPA caused a significant increase in lipid peroxidation. A decrease in GSH levels was also observed. The activities of all the studied antioxidants also decreased with BPA treatment. Melatonin was seen to mitigate the oxidative stress induced by BPA. Conclusion: Treatment of red blood cells with BPA caused an increase in oxidative stress, while melatonin decreased the induced oxidative stress.


Blood ◽  
2012 ◽  
Vol 120 (20) ◽  
pp. 4229-4237 ◽  
Author(s):  
Miriam M. Cortese-Krott ◽  
Ana Rodriguez-Mateos ◽  
Roberto Sansone ◽  
Gunter G. C. Kuhnle ◽  
Sivatharsini Thasian-Sivarajah ◽  
...  

Abstract A nitric oxide synthase (NOS)–like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the nitric oxide (NO)–imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Using immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-3H-arginine to L-3H-citrulline in a Ca2+/calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform, the activity of which is compromised in patients with coronary artery disease.


The Analyst ◽  
2020 ◽  
Vol 145 (5) ◽  
pp. 1749-1758 ◽  
Author(s):  
Katarzyna Bulat ◽  
Jakub Dybas ◽  
Magdalena Kaczmarska ◽  
Anna Rygula ◽  
Agnieszka Jasztal ◽  
...  

A new type of aggregate, formed in human red blood cells (RBCs) in response to glutaraldehyde treatment, was discovered and analyzed with the classical and advanced biomolecular imaging techniques.


Sign in / Sign up

Export Citation Format

Share Document