Chronic estrogen depletion alters adenosine diphosphate-induced pial arteriolar dilation in female rats

2001 ◽  
Vol 281 (5) ◽  
pp. H2105-H2112 ◽  
Author(s):  
H. L. Xu ◽  
R. A. Santizo ◽  
H. M. Koenig ◽  
D. A. Pelligrino

We examined pial arteriolar reactivity to a partially endothelial nitric oxide synthase (eNOS)-dependent vasodilator ADP as a function of chronic estrogen status. The eNOS-dependent portion of the ADP response was ascertained by comparing ADP-induced pial arteriolar dilations before and after suffusion of a NOS inhibitor, N ω-nitro-l-arginine (l-NNA; 1 mM) in intact, ovariectomized (Ovx), and 17β-estradiol (E2)-treated Ovx females. We also examined whether ovariectomy altered the participation of other factors in the ADP response. Those factors were the following: 1) the prostanoid indomethacin (Indo); 2) the Ca2+-dependent K+ (KCa) channel, iberiotoxin (IbTX); 3) the ATP-regulated K+(KATP) channel glibenclamide (Glib); 4) the KCa-regulating epoxygenase pathway miconazole (Mic); and 5) the adenosine receptor 8-sulfophenyltheophylline (8-SPT). In intact females, the eNOS-dependent (l-NNA sensitive) portion of the ADP response represented ∼50% of the total. The ADP response was retained in the Ovx rats but l-NNA sensitivity disappeared. On E2 replacement, the initial pattern was restored. ADP reactivity was unaffected by Indo, Glib, Mic, and 8-SPT. IbTX was associated with 50–80% reductions in the response to ADP in the intact group that was nonadditive with l-NNA, and 60–100% reductions in the Ovx group. The present findings suggest that estrogen influences the mechanisms responsible for ADP-induced vasodilation. The continued sensitivity to IbTX in Ovx rats, despite the loss of a NO contribution, is suggestive of a conversion to a hyperpolarizing factor dependency in the absence of E2.

2017 ◽  
Vol 68 (10) ◽  
pp. 2237-2242
Author(s):  
Germaine Savoiu Balint ◽  
Mihaiela Andoni ◽  
Ramona Amina Popovici ◽  
Laura Cristina Rusu ◽  
Ioana Citu ◽  
...  

Arterial endothelium produces a large ramge of active factors which are indispensable for modulation of vasomotor tone and maintenance of vascular wall integrity. From these factors, nitric oxide (NO), wich is released by the endothelial cells as a response to acetylcholine or adenosine action on specific receptors, plays an important role.NO is the result of oxidation process of L-arginine into L-citrulline, under the action of endothelial nitric oxide synthase (NOSe), wich is activated by intracelluar Ca2+ - calmodulin complex . Our study, performed in isolated organ bath, analyzed vascular reactivity of 12 guinea pigs� thoracic aorta rings. After phenylephrine -PHE 10-5 mol/L precontraction, the dose-effect curves for acetylcoline � ACH, adenosine 5� phosphate - 5�ADP and sodium nitroprusside � SNP were determined, before and after incubation of preparation, for 1 hour, with 5% hydrosoluble cigarettes smoke extract (CSE). Statistic analysis, performed with the use of t pair test and ANOVA parametric test, showed that incubation of vascular preparation with 5% CSE has increased the contractile response to PHE 10-5 mol/L (p[0.05), has reduced the endothelium-dependent relaxing response to ATP 10-5 mol/L (p[0.001) and 5�ADP 10-5 molo/L (p[0.001), but has not significantly modified the endothelium-independent relaxing response to SNP 10-5 mol/L (p=0.05). As a conclusion, vascular rings incubation with 5% CSE induced a decrease of endothelium NO synthesis under the action of AXH and 5�ADP, but did not change the smooth muscle fiber respomse in the presence of NO released by SNP.


2011 ◽  
Vol 301 (3) ◽  
pp. H721-H729 ◽  
Author(s):  
Katsuhiko Noguchi ◽  
Naobumi Hamadate ◽  
Toshihiro Matsuzaki ◽  
Mayuko Sakanashi ◽  
Junko Nakasone ◽  
...  

An elevation of oxidized forms of tetrahydrobiopterin (BH4), especially dihydrobiopterin (BH2), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH2 in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH2 concentration causes endothelial dysfunction in rats. To increase vascular BH2 levels, the BH2 precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH2 to BH4. MTX/SEP treatment did not significantly affect aortic BH4 levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH2 levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH4 levels but decreased the BH4-to-BH2 ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations ( P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD ( P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH2 causes eNOS dysfunction in vivo even in the absence of BH4 deficiency, demonstrating a novel insight into the regulation of endothelial function.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Maria Peleli ◽  
Christa Zollbrecht ◽  
Marcelo Montenegro ◽  
Michael Hezel ◽  
Eddie Weitzberg ◽  
...  

Xanthine oxidoreductase (XOR) is generally known as a source of superoxide production, but this enzyme has also been suggested to mediate NO production via reduction of inorganic nitrate (NO 3 - ) and nitrite(NO 2 - ). This pathway for NO generation is of particular importance during certain pathologies, whereas endothelial NO synthase (eNOS) is the primary source of vascular NO generation under normal physiological conditions. The exact interplay between the NOS and XOR-derived NO is not yet fully elucidated. The aim of the present study was to investigate if eNOS deficiency is partly compensated by XOR upregulation and sensitization of the NO 3 - - NO 2 - - NO pathway. NO 3 - and NO 2 - were similar between naïve eNOS KO and wildtype (wt) mice, but reduced upon chronic treatment with the non-selective NOS inhibitor L-NAME (wt: 25.0±5.2, eNOS KO: 39.2±6.4, L-NAME: 8.2±1.6 μ NO 3 - -, wt: 0.38±0.07, eNOS KO: 0.42±0.04, L-NAME: 0.12±0.02 μ NO 2 - ). XOR function was upregulated in eNOS KO compared with wt mice [(mRNA: wt 1±0.07, eNOS KO 1.38±0.17), (activity: wt 825±54, eNOS KO 1327±280 CLU/mg/min), (uric acid: wt 32.87±1.53, eNOS KO 43.23±3.54 μ)]. None of these markers of XOR activity was increased in nNOS KO and iNOS KO mice. Following acute dose of NO 3 - (10 mg/kg bw, i.p.), the increase of plasma NO 2 - was more pronounced in eNOS KO (+0.51±0.13 μ) compared with wt (+0.22±0.09 μ), and this augmented response in the eNOS KO was abolished by treatment with the highly selective XOR inhibitor febuxostat (FEB). Liver from eNOS KO had higher reducing capacity of NO 2 - to NO compared with wt, and this effect was attenuated by FEB (Δppb of NO: wt +8.7±4.2, eNOS KO +44.2±15.0, wt+FEB +22.2±9.6, eNOS KO+FEB +26.8±10.2). Treatment with FEB increased blood pressure in eNOS KO (ΔMAP:+10.2±5.6 mmHg), but had no effect in wt (ΔMAP:-0.6±3.3 mmHg). Supplementation with NO 3 - (10 mM, drinking water) reduced blood pressure in eNOS KO (ΔMAP: -6.3±2.2 mmHg), and this effect was abolished by FEB (ΔMAP: +1.1±1.9 mmHg). In conclusion, upregulated and altered XOR function in conditions with eNOS deficiency can facilitate the NO 3 - - NO 2 - - NO pathway and hence play a significant role in vascular NO homeostasis.


1995 ◽  
Vol 269 (4) ◽  
pp. R807-R813 ◽  
Author(s):  
T. Hirai ◽  
T. I. Musch ◽  
D. A. Morgan ◽  
K. C. Kregel ◽  
D. E. Claassen ◽  
...  

Recent studies have suggested that the interaction between the sympathetic nervous system and nitric oxide (NO) or nitrosyl factors may be an important means by which arterial blood pressure is regulated. We investigated whether NO synthase (NOS) inhibition modulates basal sympathetic nerve discharge (SND) in baroreceptor-innervated and -denervated, chloralose-anesthetized Sprague-Dawley rats. We recorded mean arterial pressure (MAP), renal SND, and lumbar SND before and after administration of the NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg iv). Two minutes after L-NAME administration in baroreceptor-innervated rats, MAP increased (+23 +/- 3 mmHg), whereas renal (-45 +/- 6%, n = 7) and lumbar (-35 +/- 2%, n = 6) SND significantly decreased from control levels. These changes persisted for up to 20 min after L-NAME administration. In baroreceptor-denervated rats, L-NAME increased MAP (+40 +/- 6 mmHg) and decreased lumbar SND (n = 7) (-37 +/- 10% from control at 20 min post-L-NAME). In contrast, renal SND progressively increased (+33 +/- 8% at 20 min post-L-NAME) from control after L-NAME administration in baroreceptor-denervated rats (n = 7). These results demonstrate that NOS inhibition can produce nonuniform changes in SND in baroreceptor-denervated rats and suggest that endogenous nitrosyl factors provide tonic excitation to lumbar SND, whereas they provide a tonic restraint to renal SND.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1259 ◽  
Author(s):  
Kayo Horie ◽  
Naoki Nanashima ◽  
Hayato Maeda

Phytoestrogens are plant-derived chemicals that are found in many foods and have estrogenic activity. We previously showed that blackcurrant extract (BCE) and anthocyanins have phytoestrogenic activity mediated via estrogen receptors (ERs), and anthocyanins may improve vascular function. BCE contains high levels of anthocyanins, but their health-promoting effects are unclear. This study examined the effects of BCE on the regulation of endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis in human endothelial cells as key regulators in cardiovascular disease. The results showed that eNOS mRNA levels were significantly upregulated in BCE- or anthocyanin-treated human vascular endothelial cells but decreased in cells treated with fulvestrant, an ER antagonist. These results corresponded with NO levels, suggesting that BCE and anthocyanin may regulate NO synthesis via eNOS expression. Thus, the phytoestrogenic effects exerted by BCE via ERs influenced eNOS mRNA expression and NO synthesis. In vivo, we investigated whether anthocyanin-rich BCE upregulated eNOS protein expression in ovariectomized (OVX) rats, a widely used animal model of menopause. Our results showed that anthocyanin-rich BCE significantly upregulated eNOS mRNA levels and NO synthesis through phytoestrogenic activity and therefore promoted blood vessel health in OVX rats as a postmenopausal model.


2005 ◽  
Vol 288 (1) ◽  
pp. H256-H262 ◽  
Author(s):  
Ana Carolina Rodrigues Dias ◽  
Melissa Vitela ◽  
Eduardo Colombari ◽  
Steven W. Mifflin

The neuromodulatory effect of NO on glutamatergic transmission has been studied in several brain areas. Our previous single-cell studies suggested that NO facilitates glutamatergic transmission in the nucleus of the solitary tract (NTS). In this study, we examined the effect of the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME) on glutamatergic and reflex transmission in the NTS. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) from Inactin-anesthetized Sprague-Dawley rats. Bilateral microinjections of l-NAME (10 nmol/100 nl) into the NTS did not cause significant changes in basal MAP, HR, or RSNA. Unilateral microinjection of ( RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, 1 pmol/100 nl) into the NTS decreased MAP and RSNA. Fifteen minutes after l-NAME microinjections, AMPA-evoked cardiovascular changes were significantly reduced. N-methyl-d-aspartate (NMDA, 0.5 pmol/100 nl) microinjection into the NTS decreased MAP, HR, and RSNA. NMDA-evoked falls in MAP, HR, and RSNA were significantly reduced 30 min after l-NAME. To examine baroreceptor and cardiopulmonary reflex function, l-NAME was microinjected at multiple sites within the rostro-caudal extent of the NTS. Baroreflex function was tested with phenylephrine (PE, 25 μg iv) before and after l-NAME. Five minutes after l-NAME the decrease in RSNA caused by PE was significantly reduced. To examine cardiopulmonary reflex function, phenylbiguanide (PBG, 8 μg/kg) was injected into the right atrium. PBG-evoked hypotension, bradycardia, and RSNA reduction were significantly attenuated 5 min after l-NAME. Our results indicate that inhibition of NOS within the NTS attenuates baro- and cardiopulmonary reflexes, suggesting that NO plays a physiologically significant neuromodulatory role in cardiovascular regulation.


2001 ◽  
Vol 280 (1) ◽  
pp. L88-L97 ◽  
Author(s):  
Thomas C. Resta ◽  
Nancy L. Kanagy ◽  
Benjimen R. Walker

Female rats develop less severe pulmonary hypertension (PH) in response to chronic hypoxia compared with males, thus implicating a potential role for ovarian hormones in mediating this gender difference. Considering that estrogen upregulates endothelial nitric oxide (NO) synthase (eNOS) in systemic vascular tissue, we hypothesized that estrogen inhibits hypoxic PH by increasing eNOS expression and activity. To test this hypothesis, we examined responses to the endothelium-derived NO-dependent dilator ionomycin and the NO donors S-nitroso- N-acetylpenicillamine and spermine NONOate in U-46619-constricted, isolated, saline-perfused lungs from the following groups: 1) normoxic rats with intact ovaries, 2) chronic hypoxic (CH) rats with intact ovaries, 3) CH ovariectomized rats given 17β-estradiol (E2β), and 4) CH ovariectomized rats given vehicle. Additional experiments assessed pulmonary eNOS levels in each group by Western blotting. Our findings indicate that E2β attenuated chronic hypoxia-induced right ventricular hypertrophy, pulmonary arterial remodeling, and polycythemia. Furthermore, although CH augmented vasodilatory responsiveness to ionomycin and increased pulmonary eNOS expression, these responses were not potentiated by E2β. Finally, responses to S-nitroso- N-acetylpenicillamine and spermine NONOate were similarly attenuated in all CH groups compared with normoxic control groups. We conclude that the inhibitory influence of E2β on chronic hypoxia-induced PH is not associated with increased eNOS expression or activity.


Folia Medica ◽  
2017 ◽  
Vol 59 (2) ◽  
pp. 139-158 ◽  
Author(s):  
Julia Fedotova ◽  
Daria Zarembo ◽  
Jozef Dragasek ◽  
Martin Caprnda ◽  
Peter Kruzliak ◽  
...  

AbstractBackground:Vitamin D can be one of the candidate substances that are used as additional supplementation in the treatment of anxiety-related disorders in women with estrogen imbalance.Materials and methods:The aim of the present study was to examine the effects of chronic cholecalciferol administration (1.0, 2.5 or 5.0 mg/kg/day, s.c.) on the anxiety-like behavior and monoamines levels in the rat hippocampus following ovariectomy in female rats. Cholecalciferol was given to ovariectomized (OVX) rats and OVX rats treated with 17β-estradiol (17β-E2, 0.5 μg/rat, s.c.). The anxiety-like behavior was assessed in the elevated plus maze (EPM) and the light-dark tests (LDT), locomotor and grooming activities were assessed in the open-field test (OFT).Results:Cholecalciferol in high doses alone or in combination with 17β-E2-induced anxiolytic-like effects in OVX and OVX rats treated with 17β-E2as evidenced in the EPM and LDT tests, and increased grooming activity in the OFT test. We found that DA and 5-HT levels increased while 5-HT turnover in the hippocampus decreased in these groups of OVX rats.Conclusion:Our results indicate that cholecalciferol in high doses has a marked anxiolytic-like effect due to an increase in the monoamines levels in the experimental rat model of estrogen deficiency.


2007 ◽  
Vol 293 (1) ◽  
pp. R363-R371 ◽  
Author(s):  
David B. Thorp ◽  
James V. Haist ◽  
Jennifer Leppard ◽  
Kevin J. Milne ◽  
Morris Karmazyn ◽  
...  

Acute exercise increases myocardial tolerance to ischemia-reperfusion (I-R) injury in male but not in female rat hearts, possibly due to a decreased heat shock protein 70 (Hsp70) response in the female hearts. This study examined whether repetitive exercise training would increase Hsp70 and myocardial tolerance to I-R injury in female rat hearts. Adaptations in myocardial manganese superoxide dismutase (MnSOD) and endothelial nitric oxide synthase (eNOS) were also assessed. Ten-week old male (M) and female (F) Sprague-Dawley rats ( n = 40 total) exercise-trained for 14 wk; the last 8 wk consisted of running 1 h at 30 m/min (2% incline), 5 days/wk. Following training, left ventricle mechanical function (LVMF) was monitored for 30 min of reperfusion following 30 min of global ischemia (Langendorff procedure). Myocardial Hsp70 content was not different in M and F control groups, while increases were observed in both trained groups (M greater than F; P < 0.05). Although MnSOD content did not differ between groups, endothelial nitric oxide synthase (eNOS) levels were decreased in F, with no change in M, following training ( P < 0.05). Hearts from control F demonstrated a greater recuperation of all indices of LVMF following I-R compared with control M hearts ( P < 0.05). Hearts of trained M exhibited improved recovery of LVMF (left ventricular diastolic pressure, left ventrcular end-diastolic pressure, +dP/d t, −dP/d t) during reperfusion compared with control M hearts ( P < 0.05). In contrast, hearts of trained F did not show any change in recovery from I-R. Hence, exercise training is more beneficial to M than F in improving myocardial function following I-R injury.


1996 ◽  
Vol 271 (6) ◽  
pp. H2646-H2652 ◽  
Author(s):  
J. F. Keaney ◽  
J. M. Hare ◽  
J. L. Balligand ◽  
J. Loscalzo ◽  
T. W. Smith ◽  
...  

Recent in vitro evidence suggests a role for nitric oxide (NO) in the modulation of myocardial contractility. The specific role of NO in the control of cardiac function in vivo, however, remains unclear. We investigated the effect of NO synthase (NOS) inhibition on myocardial contractility in response to beta-adrenergic stimulation in autonomically blocked dogs. Intracoronary infusions of dobutamine (1-50 micrograms/min) and isoproterenol (0.1 and 0.5 microgram/min) were performed before and after the intracoronary administration of the specific NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Intracoronary dobutamine resulted in a dose-dependent increase in peak first derivative of pressure (dP/dtmax) to a maximum of 195 +/- 10% (P < 0.001). After inhibition of NOS with intracoronary L-NAME at rates of 0.1 and 1 mg/min, the response to dobutamine was significantly enhanced with dP/dtmax, increasing 276 +/- 17 and 317 +/- 26%, respectively (P < 0.001). Intracoronary isoproterenol resulted in a maximum increase in dP/dtmax of 116 +/- 15% (P < 0.001) that further increased to 154 +/- 17 and 157 +/- 18% after NOS inhibition with 0.1 and 1 mg/min L-NAME, respectively (both P < 0.002). L-NAME had no effect on baseline dP/dtmax but did produce a reduction in myocardial guanosine 3',5'-cyclic monophosphate content. These results suggest a role for NO in the control of myocardial contractility in response to beta-adrenergic stimulation in vivo.


Sign in / Sign up

Export Citation Format

Share Document