Cerebral Blood Flow in the Rat

1958 ◽  
Vol 193 (2) ◽  
pp. 272-274 ◽  
Author(s):  
Leo A. Sapirstein ◽  
Gordon E. Hanusek

The cerebral uptake of iodoantipyrine (I131) was measured in anesthetized rats as a function of time after a single intravenous injection. The cerebral content stabilized in 7–9 seconds and remained constant for 64 seconds indicating that the brain and body had the same extraction ratio for the label. The cerebral blood flow fraction therefore corresponded to the fractional uptake of iodoantipyrine by the brain. The cerebral blood flow was calculated as the product of the cardiac output and the cerebral flow fraction. The perfusion rate of the brain was found to be 0.51 ml/gm/min. in female rats.

1958 ◽  
Vol 196 (1) ◽  
pp. 159-162 ◽  
Author(s):  
Leo A. Sapirstein ◽  
Harold Goldman

The cardiac output fractionation technique employing Rb86 or iodoantipyrine (I131) has been applied to the study of adrenal blood flow in the rat. Either indicator is suitable for the measurement of adrenal blood flow: this is indicated by constancy of label uptake during the first 30 seconds after its administration in a single intravenous injection; when given together the same fraction of each indicator is taken up by the gland. The adrenal flow fraction is 0.14% of the cardiac output in 200–275-gm female rats, corresponding to a flow of 0.078 ml/min. or 1.9 ml/gm/min. The value is increased 114% by ACTH. Ligation of one common carotid artery increases the value 80%. Laparotomy and dissection around the adrenal gland produce irregular changes in adrenal blood flow. The significance of these findings for the ‘normal’ adrenal blood flow is discussed.


2018 ◽  
Author(s):  
Markus Belau ◽  
Wolfgang Scheffer ◽  
Georg Maret

AbstractThe adequate perfusion of the brain is of utmost importance where already short periods of hypoperfusion may lead to permanent damage. In order to increase patient safety the cerebral blood flow should be monitored in clinical settings during situations, such as anesthesia, where the perfusion might be disturbed. The cerebral blood flow is however not monitored on a routine basis during anesthesia. Diffusing wave spectroscopy is a relative novel optical method that non-invasively measures changes in cerebral blood flow. Here we report changes in cerebral blood flow associated with a delayed cardiac output, a change in isoflurane concentration and body temperature observed during general anesthesia with isoflurane in pigeons.


2016 ◽  
Vol 37 (8) ◽  
pp. 2848-2856 ◽  
Author(s):  
Chang-Yang Xing ◽  
Takashi Tarumi ◽  
Jie Liu ◽  
Yinan Zhang ◽  
Marcel Turner ◽  
...  

A widely accepted dogma is that about 15–20% of cardiac output is received by the brain in healthy adults under resting conditions. However, it is unclear if the distribution of cardiac output directed to the brain alters across the adult lifespan and is modulated by sex or other hemodynamic variables. We measured cerebral blood flow/cardiac output ratio index in 139 subjects (88 women, age 21–80 years) using phase-contrast magnetic resonance imaging and echocardiography. Body mass index, cardiac systolic function (eject fraction), central arterial stiffness (carotid-femoral pulse wave velocity), arterial pressure, heart rate, physical fitness (VO2 max), and total brain volume were measured to assess their effects on the cardiac output–cerebral blood flow relationship. Cerebral blood flow/cardiac output ratio index decreased by 1.3% per decade associated with decreases in cerebral blood flow ( P < 0.001), while cardiac output remained unchanged. Women had higher cerebral blood flow, lower cardiac output, and thus higher cerebral blood flow/cardiac output ratio index than men across the adult lifespan. Age, body mass index, carotid-femoral pulse wave velocity, and arterial pressure all had negative correlations with cerebral blood flow and cerebral blood flow/cardiac output ratio index ( P < 0.05). Multivariable analysis adjusted for sex, age showed that only body mass index was negatively associated with cerebral blood flow/cardiac output ratio index (β = −0.33, P < 0.001). These findings demonstrated that cardiac output distributed to the brain has sex differences and decreases across the adult lifespan and is inversely associated with body mass index.


1996 ◽  
Vol 24 (4) ◽  
pp. 445-452 ◽  
Author(s):  
G. L. Ludbrook ◽  
R. N. Upton ◽  
C. Grant ◽  
E. C. Gray

The time-course of propofol concentrations in the blood and brain following rapid administration of three doses were examined using a sheep preparation and regional pharmacokinetic techniques. These were compared to the time-course of cerebral effects of propofol reported previously. There were marked differences between the time-course of propofol concentrations in arterial blood and the brain, with a close relationship between the time-course of brain concentrations and effects on depth of anaesthesia and CBF. There was evidence that the effect of propofol on cerebral blood flow altered its own rate of elution from the brain. Hysteresis between arterial propofol concentrations and cerebral effects following rapid IV administration therefore appears to have a pharmacokinetic basis, and conventional compartmental pharmacokinetic analysis using blood concentrations alone may fail to accurately predict the time-course of both brain propofol concentrations and depth of anaesthesia.


1958 ◽  
Vol 193 (1) ◽  
pp. 161-168 ◽  
Author(s):  
Leo A. Sapirstein

K42 Cl, Rb86Cl and iodoantipyrine (I131) were given in single intravenous injections to rats. The isotope content of the organs and the arterial blood concentrations were studied as a function of time. K42Cl and Rb86Cl reached a stable level in all organs other than the brain in 6–9 seconds and maintained this level until 64 seconds. The arterial concentration curves for the isotopes showed that the injected dose was almost completely transferred into the arterial system at about 6–8 seconds. The isotopes showed subsequent recirculation amounting to about 40% of the original dose between the first recirculation and 64 seconds. The organs which displayed stability during the period of recirculation must have had extraction ratios from zero time less than 1.00 but equal to that of the whole body. The fractional uptake of indicator by such organs must therefore have been equal to their blood flow fraction of the cardiac output. The brain reached its maximum content of Rb86 and K42 in 5–6 seconds; both isotopes then disappeared rapidly. The brain was thus shown to have a lower extraction ratio toward these isotopes than the body as a whole; its flow fraction could not therefore be measured by their use. Most organs failed to show stability of their iodoantipyrine content between 9 and 64 seconds; this indicator is not suitable for the measurement of the flow fraction of such organs. By combining values for the cardiac output and the fractional uptake of K42 in dog organs, regional blood flow values were obtained. For those other organs where flow values by other methods are available, the agreement was good. The following blood flow values were obtained in the major organs of the dog: Heart (coronary flow), 1.0 ml/gm/min.; kidney, 3.0 ml/gm/min.; liver, 1.2 ml/gm/min. (0.4 ml/gm/min. hepatic artery, 0.8 ml/gm/min. portal vein); skin, 0.07 ml/gm/min.


1989 ◽  
Vol 28 (03) ◽  
pp. 88-91
Author(s):  
J. Schröder ◽  
H. Henningsen ◽  
H. Sauer ◽  
P. Georgi ◽  
K.-R. Wilhelm

18 psychopharmacologically treated patients (7 schizophrenics, 5 schizoaffectives, 6 depressives) were studied using 99mTc-HMPAO-SPECT of the brain. The regional cerebral blood flow was measured in three transversal sections (infra-/supraventricular, ventricular) within 6 regions of interest (ROI) respectively (one frontal, one parietal and one occipital in each hemisphere). Corresponding ROIs of the same section in each hemisphere were compared. In the schizophrenics there was a significantly reduced perfusion in the left frontal region of the infraventricular and ventricular section (p < 0.02) compared with the data of the depressives. The schizoaffectives took an intermediate place. Since the patients were treated with psychopharmaca, the result must be interpreted cautiously. However, our findings seem to be in accordance with post-mortem-, CT- and PET-studies presented in the literature. Our results suggest that 99mTc-HMPAO-SPECT may be helpful in finding cerebral abnormalities in endogenous psychoses.


2001 ◽  
Vol 14 (5) ◽  
pp. 407-415
Author(s):  
John T. Metz ◽  
Malcolm D. Cooper ◽  
Terry F. Brown ◽  
Leann H. Kinnunen ◽  
Declan J. Cooper

The process of discovering and developing new drugs is complicated. Neuroimaging methods can facilitate this process. An analysis of the conceptual bases and practical limitations of different neuroimaging modalities reveals that each technique can best address different kinds of questions. Radioligand studies are well suited to preclinical and Phase II questions when a compound is known or suspected to affect well-understood mechanisms; they are also useful in Phase IV to characterize effective agents. Cerebral blood flow studies can be extremely useful in evaluating the effects of a drug on psychological tasks (mostly in Phase IV). Glucose metabolism studies can answer the simplest questions about whether a compound affects the brain, where, and how much. Such studies are most useful in confirming central effects (preclinical and early clinical phases), in determining effective dose ranges (Phase II), and in comparing different drugs (Phase IV).


Author(s):  
Hans T. Versmold

Systemic blood pressure (BP) is the product of cardiac output and total peripheral resistance. Cardiac output is controlled by the heart rate, myocardial contractility, preload, and afterload. Vascular resistance (vascular hindrance × viscosity) is under local autoregulation and general neurohumoral control through sympathetic adrenergic innervation and circulating catecholamines. Sympathetic innovation predominates in organs receivingflowin excess of their metabolic demands (skin, splanchnic organs, kidney), while innervation is poor and autoregulation predominates in the brain and heart. The distribution of blood flow depends on the relative resistances of the organ circulations. During stress (hypoxia, low cardiac output), a raise in adrenergic tone and in circulating catecholamines leads to preferential vasoconstriction in highly innervated organs, so that blood flow is directed to the brain and heart. Catecholamines also control the levels of the vasoconstrictors renin, angiotensin II, and vasopressin. These general principles also apply to the neonate.


2004 ◽  
Vol 137 (4) ◽  
pp. 411-414 ◽  
Author(s):  
V. V. Bulon ◽  
I. B. Krylova ◽  
N. R. Evdokimova ◽  
A. L. Kovalenko ◽  
L. E. Alekseeva ◽  
...  

1989 ◽  
Vol 9 (6) ◽  
pp. 886-891 ◽  
Author(s):  
David Barranco ◽  
Leslie N. Sutton ◽  
Sandra Florin ◽  
Joel Greenberg ◽  
Teresa Sinnwell ◽  
...  

19F NMR was used to determine washout curves of an inert, diffusible gas (CHF3) from the cat brain. The cerebral blood flow was estimated from a bi- or tri-phasic fit to the deconvoluted wash-out curve, using the Kety-Schmidt approach. Cerebral blood flow values determined by 19F NMR show the expected responsiveness to alterations in Paco2, but are approximately 28% lower than cerebral blood flow values determined simultaneously by radioactive microsphere techniques. High concentrations of CHF3 have little effect on intracranial pressure, mean arterial blood pressure or Paco2, but cause small changes in the blood flow to certain regions of the brain. We conclude that 19F NMR techniques utilizing low concentrations of CHF3 have potential for the noninvasive measurement of cerebral blood flow.


Sign in / Sign up

Export Citation Format

Share Document