Effect of Nembutal on circulating and tissue blood volumes and hematocrits of intact and splenectomized mice

1959 ◽  
Vol 197 (2) ◽  
pp. 399-402 ◽  
Author(s):  
Julius J. Friedman

The effect of Nembutal on the circulating and tissue blood volumes and hematocrits was calculated by means of independent determinations of plasma and red cell volumes. Nembutal produced an increase in circulating blood volume accompanied by a reduction in the venous hematocrit. The blood volumes of liver, kidney, spleen and intestine rose following the administration of Nembutal, while the hematocrits of liver, lung, intestine and muscle declined, and that of kidney rose. The administration of Nembutal to splenectomized mice produces similar changes. The relationship of these alterations to changes in periphero-vascular tone are discussed.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jaap Jan Vos ◽  
J. K. Götz Wietasch ◽  
Andreas Hoeft ◽  
Thomas W. L. Scheeren

Abstract Background The effects of selective pulmonary vascular tone alterations on cardiac preload have not been previously examined. Therefore, we evaluated whether changing pulmonary vascular tone either by hypoxia or the inhalation of aerosolized prostacyclin (PGI2) altered intrathoracic or pulmonary blood volume (ITBV, PBV, respectively), both as surrogate for left ventricular preload. Additionally, the mean systemic filling pressure analogue (Pmsa) and pressure for venous return (Pvr) were calculated as surrogate of right ventricular preload. Methods In a randomized controlled animal study in 6 spontaneously breathing dogs, pulmonary vascular tone was increased by controlled moderate hypoxia (FiO2 about 0.10) and decreased by aerosolized PGI2. Also, inhalation of PGI2 was instituted to induce pulmonary vasodilation during normoxia and hypoxia. PBV, ITBV and circulating blood volume (Vdcirc) were measured using transpulmonary thermo-dye dilution. Pmsa and Pvr were calculated post hoc. Either the Wilcoxon-signed rank test or Friedman ANOVA test was performed. Results During hypoxia, mean pulmonary artery pressure (PAP) increased from median [IQR] 12 [8–15] to 19 [17–25] mmHg (p < 0.05). ITBV, PBV and their ratio with Vdcirc remained unaltered, which was also true for Pmsa, Pvr and cardiac output. PGI2 co-inhalation during hypoxia normalized mean PAP to 13 (12–16) mmHg (p < 0.05), but left cardiac preload surrogates unaltered. PGI2 inhalation during normoxia further decreased mean PAP to 10 (9–13) mmHg (p < 0.05) without changing any of the other investigated hemodynamic variables. Conclusions In spontaneously breathing dogs, changes in pulmonary vascular tone altered PAP but had no effect on cardiac output, central blood volumes or their relation to circulating blood volume, nor on Pmsa and Pvr. These observations suggest that cardiac preload is preserved despite substantial alterations in right ventricular afterload.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Agata Sobczyńska-Malefora ◽  
Dominic J. Harrington ◽  
Kieran Voong ◽  
Martin J. Shearer

5-Methyltetrahydrofolate (5-MTHF) is the predominant form of folate and a strong determinant of homocysteine concentrations. There is evidence that suboptimal 5-MTHF availability is a risk factor for cardiovascular disease independent of homocysteine. The analysis of folates remains challenging and is almost exclusively limited to the reporting of “total” folate rather than individual molecular forms. The purpose of this study was to establish the reference intervals of 5-MTHF in plasma and red cells of healthy adults who had been prescreened to exclude biochemical evidence of functional deficiency of folate and/or vitamin B12. Functional folate and vitamin B12status was assessed by respective plasma measurements of homocysteine and methylmalonic acid in 144 healthy volunteers, aged 19–64 years. After the exclusion of 10 individuals, values for 134 subjects were used to establish the upper reference limits for homocysteine (13 μmol/L females and 15 μmol/L males) and methylmalonic acid (430 nmol/L). Subjects with values below these cutoffs were designated as folate and vitamin B12replete and their plasma and red cell 5-MTHF reference intervals determined,N=126: 6.6–39.9 nmol/L and 223–1041 nmol/L, respectively. The application of these intervals will assist in the evaluation of folate status and facilitate studies to evaluate the relationship of 5-MTHF to disease.


1987 ◽  
Vol 65 (11) ◽  
pp. 2168-2174 ◽  
Author(s):  
C. V. Greenway

Intrahepatic blood volume–pressure relationships were studied using plethysmography to measure hepatic blood volume and a hepatic venous long-circuit to control intrahepatic pressure. In cats anesthetized with pentobarbital or with ketamine–chloralose, hemorrhage (to reduce hepatic blood flow to 60% of control) caused marked reductions in hepatic blood volume and intrahepatic pressure but did not significantly change hepatic blood volume–pressure relationships. We were unable to demonstrate an active reflex venous response to hemorrhage in these preparations, although a large passive response occurred. The volume–pressure relationships in innervated livers were different from those in denervated livers: apparent venous compliance was much greater and apparent unstressed volume was zero or negative. Hepatic nerve stimulation in denervated livers caused a marked decrease in hepatic blood volume at low intrahepatic pressures but failed to alter hepatic blood volumes at high intrahepatic pressures (15 mmHg) (1 mmHg = 133.3 Pa). This resulted in large apparent compliances and apparently negative unstressed volumes, as seen in the innervated livers. Thus blood volume–pressure relationships in innervated livers may not give valid measurements of compliance and unstressed volume. A remarkable feature in all these experiments was the linearity of the relationship between hepatic blood volume and intrahepatic pressure. Exudation of fluid begins at higher intrahepatic pressures in innervated compared with denervated livers.


Blood ◽  
1969 ◽  
Vol 34 (2) ◽  
pp. 157-165 ◽  
Author(s):  
RONALD L. NAGEL ◽  
HELEN M. RANNEY ◽  
THOMAS B. BRADLEY ◽  
ALAN JACOBS ◽  
LINDA UDEM

Abstract A Jewish family in which Hb L Ferrara (α247 Asp → Gly β2) occurred is reported. Studies of some of the properties of this hemoglobin demonstrated that its oxygen equilibria, number of readily reactive-SH groups, and spectro-photometric tyrosine titration were indistinguishable from Hb A. Nevertheless, Hb LF was more unstable than Hb A at 55 C. The propositus had accelerated blood destruction although six other heterozygotes for Hb LF did not. A second defect in red cell enzymes or red cell lipids of the propositus was not demonstrable with the technics used but the possibility that the simultaneous occurrence of Hb LF and an otherwise "silent" red cell defect may lead to a hemolytic state remains an attractive explanation. The data provided by this family study did not permit a definite conclusion about the relationship of clinically evident hemolysis in the propositus to the presence of the abnormal hemoglobin.


Blood ◽  
1969 ◽  
Vol 33 (5) ◽  
pp. 708-716 ◽  
Author(s):  
MANUEL CUADRA ◽  
JUAN TAKANO

Abstract Ultrathin sections of erythrocytosis parasitized by B. bacilliformis have been examined by electron microscopy. The study concerns three Oroya Fever patients whose blood smears showed B. bacilliformis predominantly in its coccoid form as parastizing over 70 per cent of the red cells. B. bacilliformis is termed as a bacterium in its structure and appears to lie not only on the host red cells but predominantly within them. Therefore, this organism might have the capacity to penetrate into the red cell. This finding does not change the basic concept regarding the mechanism of the anemia of Oroya Fever.


Blood ◽  
1977 ◽  
Vol 49 (2) ◽  
pp. 301-307 ◽  
Author(s):  
R Alexanian

Abstract The plasma volume, red cell volume, or both were measured in 170 normal, anemic, or polycythemic subjects. For anemic subjects without a serum protein abnormality or splenomegaly, the relationship between hematocrit and red cell volume was linear and predictable. In patients with a serum monoclonal globulin on electrophoresis, the plasma voluem was significantly increased for the hematocrit in 30%, and the total blood volume was increased in 45%. The frequency of an elevated plasma volume was higher in patients with a markedly increased level of monoclonal protein. Reductions of abnormal proteins with chemotherapy were associated with declines in plasma volume. For a specific concentration, the serum viscosity was highest in patients with IgM proteins and lowest in patients with IgG globulins. Marked elevations in viscosity were noted only in sera with macroglobulinemia or with more than 5 g/dl of IgG or IgA globulins.


2003 ◽  
Vol 13 (6) ◽  
pp. 544-550 ◽  
Author(s):  
Rilvani C. Gonçalves ◽  
Carlos Alberto Buschpigell ◽  
Antonio Augusto Lopes

In the Eisenmenger syndrome, indirect estimation of blood volumes may provide quite inaccurate information when seeking to define therapeutic strategies. With this in mind, we analyzed directly the red cell mass, plasma volume, and total blood volume in patients with pulmonary hypertension associated with congenital cardiac defects and erythrocytosis, comparing the results with the respective estimated volumes, and examining the changes induced by therapeutic hemodilution.Thus, we studied 17 patients with the Eisenmenger syndrome, aged from 15 to 53 years, in the basal condition, studying 12 of them both before and after hemodilution. We also investigated five individuals with minimal cardiac lesions, aged from 14 to 42 years, as controls. Red cell mass and plasma volumes were measured using [51 chromium]-sodium chromate and [131iodine]-albumin respectively. Hemodilution was planned so as to exchange 10% of the total blood volume, using 40,000 molecular weight dextran simultaneously to replace the removed volume. The mean values of the red cell mass, plasma volume and total blood volume as assessed by radionuclide techniques were 32%, 31% and 32% higher than the respective volumes as estimated using empirical mathematical formulas (p < 0.002). The measured total blood volume was also 19% higher in the patients compared with controls. Following a period of 5 days after hemodilution, we noted a 13% reduction in red cell mass (p = 0.046), and 10% reduction in total blood volume (p = 0.02), albeit with no changes in the plasma volume.We conclude that direct measurement of blood volumes is useful for proper management of these patients, and provides results that are considerably different from those obtained by empirical estimations.


1961 ◽  
Vol 16 (3) ◽  
pp. 538-540
Author(s):  
Paul W. Willard ◽  
Steven M. Horvath

Blood volumes with simultaneous blood- and red cell-distribution measurements were determined by the Cr51 technique in four groups of rats. In splenectomized and nonsplenectomized animals, blood volume of the whole body, lung, spleen, liver, kidney, heart, diaphragm, and gastrocnemius muscle was measured in both the control rats (body temperature 37 C) and in rats with hypothermically induced cardiac arrest (body temperature 8–9 C). Splenectomy caused alterations in some visceral blood volumes without concurrent changes in red cell mass. With cardiac arrest increased quantities of blood and red cell mass were observed in the lung, liver, and gastrocnemius in both splenectomized and nonsplenectomized groups. In the nonsplenectomized animals an increase of over 100 % in spleen blood volume was observed. When the two hypothermic groups were compared, differences existed only in blood volume of the lung, heart, and kidney. Hypothermia induced a pattern of blood redistribution toward visceral areas of the body. Submitted on October 14, 1960


1990 ◽  
Vol 259 (3) ◽  
pp. H674-H680 ◽  
Author(s):  
A. A. Shoukas ◽  
H. G. Bohlen

The hypothesis that the pressure-diameter relationship of intestinal venules in rats is primarily determined by sympathetic nervous system activity was tested. The pressure-diameter relationship of the smallest to largest diameter (20-100 microns) intestinal venules of the rat was measured at rest, during hemorrhage to increase sympathetic neural activity, and during saline volume expansion to decrease sympathetic activity. During hemorrhage, the diameter of all venules decreased approximately 10% at 10 mmHg venous pressure, and the slope of the pressure-diameter relationship increased approximately 50% above control. Blood volume expansion led to an approximately 10% increase in venule diameter at 10 mmHg and a 25% decrease in slope. Denervation of the vessels causes concomitant vasodilation, which was greater than the vasodilation caused by blood volume expansion. Hemorrhage after denervation caused no significant changes in the relationship when compared with denervated control. Nitroprusside caused an even greater vasodilation when compared with the pressure-diameter relationship after denervation. The results suggest that the slope and 10-mmHg intercept of the pressure-diameter relationship for the largest through smallest intestinal venules and, therefore, their vascular compliance and capacitance characteristics are primarily determined by sympathetic activity.


Sign in / Sign up

Export Citation Format

Share Document