Cardiovascular response to graded exercise in the sympathectomized-vagotomized dog

1963 ◽  
Vol 204 (2) ◽  
pp. 291-296 ◽  
Author(s):  
Edmundo Ashkar ◽  
William F. Hamilton

Seven dogs who ran well on a motor-driven treadmill were completely sympathectomized (including adrenal denervation) and subjected to unilateral vagotomy below the recurrent laryngeal branch. After recovery and retraining, a terminal experiment was performed in which, after completing the vagotomy, direct Fick determinations of cardiac output and continuous recordings of mean arterial pressure, heart rate, and oxygen consumption were made at rest and during increasing exercise The results were compared with those described by Barger et al. ( Am. J. Physiol. 184: 613, 1956) for normal dogs running at smaller speeds and grades. The heart rate of the operated dogs increased from 117 to 134. Barger's normal dogs doubled their heart rate. The A-V oxygen difference increased with work slightly less than Barger's normal dogs but the scatter in both groups was wide, as was the case with the stroke volume. The resting cardiac output was nearly normal in the operated dogs but increased only 34% with exercise, as against 200–300% in Barger's normals. Oxygen consumption increased about twofold as against the expected normal of three- to sevenfold. Peripheral resistance in both groups went down about 40%. The blood pressure in the normal increased substantially while that in the operated dogs fell about 20% to an average of 60 mm Hg.

Cephalalgia ◽  
2019 ◽  
Vol 40 (3) ◽  
pp. 266-277
Author(s):  
Willebrordus PJ van Oosterhout ◽  
Guus G Schoonman ◽  
Dirk P Saal ◽  
Roland D Thijs ◽  
Michel D Ferrari ◽  
...  

Introduction Migraine and vasovagal syncope are comorbid conditions that may share part of their pathophysiology through autonomic control of the systemic circulation. Nitroglycerin can trigger both syncope and migraine attacks, suggesting enhanced systemic sensitivity in migraine. We aimed to determine the cardiovascular responses to nitroglycerin in migraine. Methods In 16 women with migraine without aura and 10 age- and gender-matched controls without headache, intravenous nitroglycerin (0.5 µg·kg−1·min−1) was administered. Finger photoplethysmography continuously assessed cardiovascular parameters (mean arterial pressure, heart rate, cardiac output, stroke volume and total peripheral resistance) before, during and after nitroglycerin infusion. Results Nitroglycerin provoked a migraine-like attack in 13/16 (81.2%) migraineurs but not in controls ( p = .0001). No syncope was provoked. Migraineurs who later developed a migraine-like attack showed different responses in all parameters vs. controls (all p < .001): The decreases in cardiac output and stroke volume were more rapid and longer lasting, heart rate increased, mean arterial pressure and total peripheral resistance were higher and decreased steeply after an initial increase. Discussion Migraineurs who developed a migraine-like attack in response to nitroglycerin showed stronger systemic cardiovascular responses compared to non-headache controls. The stronger systemic cardiovascular responses in migraine suggest increased systemic sensitivity to vasodilators, possibly due to insufficient autonomic compensatory mechanisms.


1997 ◽  
Vol 9 (4) ◽  
pp. 331-341
Author(s):  
Kenneth R. Turley ◽  
Jack H. Wilmore

This study investigated whether cardiovascular responses at a given submaximal oxygen consumption (V̇O2, L · min-1) are different between the treadmill (TM) and cycle ergometer (CE). Submaximal cardiovascular measurements were obtained at three work rates on both the TM and CE in 7- to 9-year-old children (12 males and 12 females). Using regression analysis, it was determined that there were no differences between the TM and CE in cardiac output (L · min-1), stroke volume (SV, ml · beat-1) or heart rate (beats · min-1) at a given V̇O2 (L · min-1). There were differences in the total peripheral resistance (TPR, units) and arterial-venous oxygen difference (a-vO2 diff, ml · 100 ml-1) to V̇O2 (L · min-1) relationship. While there were statistically significant differences in TPR and a-vO2 diff between the two modalities, there was substantial overlap of individual values at any given submaximal V̇O2, thus the physiological significance is questionable. Hence, we conclude that in 7- to 9-yearold children there are no differences in submaximal cardiovascular responses between the CE and TM.


1989 ◽  
Vol 256 (3) ◽  
pp. R778-R785 ◽  
Author(s):  
M. I. Talan ◽  
B. T. Engel

Heart rate, stroke volume, and intra-arterial blood pressure were monitored continuously in each of four monkeys, 18 consecutive h/day for several weeks. The mean heart rate, stroke volume, cardiac output, systolic and diastolic blood pressure, and total peripheral resistance were calculated for each minute and reduced to hourly means. After base-line data were collected for approximately 20 days, observation was continued for equal periods of time under conditions of alpha-sympathetic blockade, beta-sympathetic blockade, and double sympathetic blockade. This was achieved by intra-arterial infusion of prazosin, atenolol, or a combination of both in concentration sufficient for at least 75% reduction of response to injection of agonists. The results confirmed previous findings of a diurnal pattern characterized by a fall in cardiac output and a rise in total peripheral resistance throughout the night. This pattern was not eliminated by selective blockade, of alpha- or beta-sympathetic receptors or by double sympathetic blockade; in fact, it was exacerbated by sympathetic blockade, indicating that the sympathetic nervous system attenuates these events. Because these findings indicate that blood volume redistribution is probably not the mechanism mediating the observed effects, we have hypothesized that a diurnal loss in plasma volume may mediate the fall in cardiac output and that the rise in total peripheral resistance reflects a homeostatic regulation of arterial pressure.


1960 ◽  
Vol 15 (6) ◽  
pp. 1065-1068 ◽  
Author(s):  
Edward J. Hershgold ◽  
Sheldon H. Steiner

Dogs were accelerated on the Wright-Patterson AFB human centrifuge in positive and transverse vectors. Cardiac output, blood pressure and heart rate were measured, and stroke volume and peripheral resistance calculated. In positive (headward) acceleration, the cardiac output and stroke volume were reduced; the peripheral resistance was increased. In the transverse vectors, the cardiac output was stable or increased; stroke volume was stable, and peripheral resistance was reduced. The results suggest that the circulatory disturbances associated with positive acceleration may limit tolerance to acceleration and that these may be avoided in transverse acceleration. Note: (With the Technical Assistance of Peter Grenell) Submitted on December 3, 1959


2019 ◽  
Vol 33 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Stefan Duschek ◽  
Alexandra Hoffmann ◽  
Casandra I. Montoro ◽  
Gustavo A. Reyes del Paso

Abstract. Chronic low blood pressure (hypotension) is accompanied by symptoms such as fatigue, reduced drive, faintness, dizziness, cold limbs, and concentration difficulties. The study explored the involvement of aberrances in autonomic cardiovascular control in the origin of this condition. In 40 hypotensive and 40 normotensive subjects, impedance cardiography, electrocardiography, and continuous blood pressure recordings were performed at rest and during stress induced by mental calculation. Parameters of cardiac sympathetic control (i.e., stroke volume, cardiac output, pre-ejection period, total peripheral resistance), parasympathetic control (i.e., heart rate variability), and baroreflex function (i.e., baroreflex sensitivity) were obtained. The hypotensive group exhibited markedly lower stroke volume, heart rate, and cardiac output, as well as higher pre-ejection period and baroreflex sensitivity than the control group. Hypotension was furthermore associated with a smaller blood pressure response during stress. No group differences arose in total peripheral resistance and heart rate variability. While reduced beta-adrenergic myocardial drive seems to constitute the principal feature of the autonomic impairment that characterizes chronic hypotension, baroreflex-related mechanisms may also contribute to this state. Insufficient organ perfusion due to reduced cardiac output and deficient cardiovascular adjustment to situational requirements may be involved in the manifestation of bodily and mental symptoms.


1975 ◽  
Vol 03 (03) ◽  
pp. 245-261 ◽  
Author(s):  
Do Chil Lee ◽  
Myung O. Lee ◽  
Donald H. Clifford

The cardiovascular effects of moxibustion at Jen Chung (Go-26) in 10 dogs under halothane anesthesia were compared to 5 dogs under halothane anesthesia without moxibustion and 5 dogs under halothane anesthesia in which moxibustion was effected at a neutral or non-acupuncture site. Cardiac output, stroke volume, heart rate, mean arterial pressure, central venous pressure, total peripheral resistance, pH, PaCO2, PaO2 and base deficit were measured over a two-hour period. A significant increase in cardiac output and stroke volume and a significant decrease in the total peripheral resistance were observed in the group which was stimulated by moxibustion at Jen Chun (Go-26). Heart rate, mean arterial pressure and pulse pressure were significantly increase during the early part of the two-hour period in the same group. The cardiovascular effects of moxibustion at Jen Chung (Go-26) which were observed at the end of the two hours were also present in two dogs in which measurements were continued for two additional hours.


1962 ◽  
Vol 202 (6) ◽  
pp. 1171-1174 ◽  
Author(s):  
Theodore Cooper ◽  
Teresa Pinakatt ◽  
Max Jellinek ◽  
Alfred W. Richardson

Hyperthermia of 40.5 C was induced in anesthetized white rats by microwave exposure (2,450-Mc continuous wave, .08 w/cm2). Thermal response was accompanied by increased cardiac output, stroke volume, cardiac work, and heart rate. Blood pressure and total peripheral resistance decreased. Administration of reserpine as a single dose of 2.5 mg/kg body wt. 1 day before the experiment depleted the myocardial norepinephrine, but did not eliminate the accelerated heart rate and increase of cardiac output during hyperthermia. Hyperthermia after reserpine did not alter significantly the stroke volume and blood pressure, and the peripheral resistance decreased. These data suggest that the circulatory adaptation to microwave hyperthermia is mediated not only through the sympathetic nervous system, but by other mechanisms such as direct cardiac response to the increased tissue temperature.


1965 ◽  
Vol 43 (3) ◽  
pp. 411-420 ◽  
Author(s):  
M. A. Chiong ◽  
P. F. Binnion ◽  
J. D. Hatcher

The cardiovascular effects of an intravenous injection of pronethalol (2.5 mg/kg) and the effect of this agent on the cardiovascular changes induced by an infusion of adrenaline (0.2 μg/kg per minute) were investigated in intact anaesthetized dogs. Fifteen minutes after the administration of pronethalol, significant increases were observed in oxygen consumption, right ventricular systolic pressure, and haematocrit, and decreases in arterial blood pressure and total peripheral resistance. Arterial hypotension and a fall in stroke work were the only changes noted at 30 minutes. There was considerable variability in cardiac output, stroke volume, and heart rate but, on the average, no significant change was observed. Pretreatment with pronethalol abolished or significantly reduced the adrenaline-induced rises in cardiac output, heart rate, stroke volume, stroke work, oxygen consumption, right ventricular systolic pressure, and arterial haematocrit, and reversed the changes in diastolic arterial pressure and peripheral resistance. It is concluded that pronethalol is not devoid of sympathomimetic activity and that it effectively blocks the adrenaline responses mediated by β-receptors.


1964 ◽  
Vol 207 (6) ◽  
pp. 1349-1353 ◽  
Author(s):  
G. C. Whittow ◽  
P. D. Sturkie ◽  
G. Stein

The effect of hyperthermia on the respiratory rate, cardiac output, blood pressure, arterial hematocrit, and the skin temperatures of the extremities of unanesthetized hens has been investigated. During hyperthermia, the respiratory rate increased to a maximal value and then declined. There was also an increase in cardiac output, followed by a decrease, but the peak cardiac output occurred at a rectal temperature which was significantly higher than that at which the peak respiratory rate was recorded. The increase in cardiac output was the result of an increase in both stroke volume and heart rate. The diminution of cardiac output seemed to be related to a decrease in the stroke volume at high levels of heart rate. The decrease in blood pressure and total peripheral resistance was attributed partly to an increased blood flow through the extremities.


1976 ◽  
Vol 04 (02) ◽  
pp. 153-161 ◽  
Author(s):  
Myung O. Lee ◽  
Do Chil Lee ◽  
Donald H. Clifford

The cardiovascular effects of acupuncture, moxibustion by electrocautery, at Jen Chung (Go-26) and phentolamine (0.1 mg/kg-i.v.) alone were compared to phentolamine (0.1 mg/kg-i.v.) prior to moxibustion at Go-26 in groups of ten dogs under 0.75 percent halothane anesthesia. Cardiac output, stroke volume, heart rate, mean arterial pressure, central venous pressue, total peripheral resistance, pH, PaCO2, PaO2 and base deficit were measured over a two hour period. A significant increase (5% level) in cardiac output, stroke volume, heart rate, mean arterial pressure, pulse pressure and significant decrease in total peripheral resistance were observed following acupuncture, moxibustion with electrocautery, at Jen Chung (Go-26) in dogs under halothane anesthesia. These effects were inhibited by pretreatment with the alpha blocking agent, phentolamine (0.1mg/kg-i.v.). The cardiovascular effects of phentolamine (0.1mg/kg-i.v.) alone were similar to those of dogs in which phenotolamine was administered prior to moxibustion.


Sign in / Sign up

Export Citation Format

Share Document