Motor innervation of the toad iris (Bufo marinus)

1976 ◽  
Vol 231 (4) ◽  
pp. 1272-1278 ◽  
Author(s):  
JL Morris

The sphincter pupillae muscle cells in the iris of Bufo marinus contract autonomously in response to bright light, causing a rapid constriction of the pupil. A strong sympathetic beta-adrenergic inhibition of the sphincter pupillae is apparent in this species. The inhibitory fibers can originate in the second, third, or fourth ventral spinal roots. No strong, consistent excitatory innervation of the toad iris was detected, even by transmural stimulation of the isolated iris. Pupilloconstriction occasionally resulted from stimulation of the 3rd or 5th cranial nerves, but the effect was small (10-20% of the magnitude of the light response) and inconsistent. It therefore appears that the toad must regulate pupillary diameter by balancing myogenic contraction, in direct response to light, against neurogenic (sympathetic) relaxation of the sphincter pupillae.

Author(s):  
R.L. Martuza ◽  
T. Liszczak ◽  
A. Okun ◽  
T-Y Wang

Neurofibromatosis (NF) is an autosomal dominant genetic disorder with a prevalence of 1/3,000 births. The NF mutation causes multiple abnormalities of various cells of neural crest origin. Schwann cell tumors (neurofibromas, acoustic neuromas) are the most common feature of neurofibromatosis although meningiomas, gliomas, and other neoplasms may be seen. The schwann cell tumors commonly develop from the schwann cells associated with sensory or sympathetic nerves or their ganglia. Schwann cell tumors on ventral spinal roots or motor cranial nerves are much less common. Since the sensory neuron membrane is known to contain a mitogenic factor for schwann cells, we have postulated that neurofibromatosis may be due to an abnormal interaction between the nerve and the schwann cell and that this interaction may be hormonally modulated. To test this possibility a system has been developed in which an enriched schwannoma cell culture can be obtained and co-cultured with pure neurons.


1997 ◽  
Vol 106 (7) ◽  
pp. 594-598 ◽  
Author(s):  
Sina Nasri ◽  
Joel A. Sercarz ◽  
Pouneh Beizai ◽  
Young-Mo Kim ◽  
Ming Ye ◽  
...  

The neuroanatomy of the larynx was explored in seven dogs to assess whether there is motor innervation to the thyroarytenoid (TA) muscle from the external division of the superior laryngeal nerve (ExSLN). In 3 animals, such innervation was identified. Electrical stimulation of microelectrodes applied to the ExSLN resulted in contraction of the TA muscle, indicating that this nerve is motor in function. This was confirmed by electromyographic recordings from the TA muscle. Videolaryngostroboscopy revealed improvement in vocal fold vibration following stimulation of the ExSLN compared to without it. Previously, the TA muscle was thought to be innervated solely by the recurrent laryngeal nerve. This additional pathway from the ExSLN to the TA muscle may have important clinical implications in the treatment of neurologic laryngeal disorders such as adductor spasmodic dysphonia.


1975 ◽  
Vol 63 (2) ◽  
pp. 497-503
Author(s):  
J. Westin ◽  
J. M. Camhi

1. Clusters of legs having prothoracic and metathoracic origins were grown from the metathoracic coxa of the cockroach. 2. Or occasionally two, of the three major nerves innervating the cockroach leg. 3. Stimulation of a particular leg nerve (no. 3, 5 or 6) evoked movement at the same joints and in the same directions in a leg having only one nerve as in a normal leg. 4. Stimulation of a particular metathoracic nerve generally produced the same movements in a prothoracic leg transplanted to the metathoracic site as it did in a regenerated or intact metathoracic leg.


Author(s):  
Thomas Guiho ◽  
Christine Azevedo Coste ◽  
Claire Delleci ◽  
Jean-Patrick Chenu ◽  
Jean-Rodolphe Vignes ◽  
...  

Spinal cord injuries (SCI) result in the loss of movement and sensory feedback as well as organs dysfunctions. For example, nearly all SCI subjects loose their bladder control and are prone to kidney failure if they do not proceed to intermittent (self-) catheterization. Electrical stimulation of the sacral spinal roots with an implantable neuroprosthesis is a promising approach, with commercialized products, to restore continence and control micturition. However, many persons do not ask for this intervention since a surgical deafferentation is needed and the loss of sensory functions and reflexes become serious side effects of this procedure. Recent results renewed interest in spinal cord stimulation. Stimulation of existing pre-cabled neural networks involved in physiological processes regulation is suspected to enable synergic recruitment of spinal fibers. The development of direct spinal stimulation strategies aiming at bladder and bowel functions restoration would therefore appear as a credible alternative to existent solutions. However, a lack of suitable large animal model complicates these kinds of studies. In this article, we propose a new animal model of spinal stimulation -pig- and will briefly introduce results from one first acute experimental validation session.


1972 ◽  
Vol 57 (2) ◽  
pp. 435-448 ◽  
Author(s):  
B. L. ROBERTS ◽  
I. J. RUSSELL

1. The activity of efferent neurones innervating lateral-line organs on the body of dogfish was followed by recording from filaments of cranial nerve X in 41 decerebrate preparations. 2. The efferent nerves were not spontaneously active. 3. Tactile stimulation to the head and body, vestibular stimulation and noxious chemical stimulation were followed by activity of the efferent nerves. 4. In contrast, natural stimulation of lateral-line organs (water jets) did not reflexly evoke discharges from the efferent fibres. 5. Reflex efferent responses were still obtained to mechanical stimulation even after the lateral-line organs had been denervated. 6. Electrical stimulation of cranial nerves innervating lateral-lines organs was followed by reflex activity of the efferent fibres. But similar stimuli applied to other cranial nerves were equally effective in exciting the efferent system. 7. Vigorous movements of the fish, involving the white musculature, were preceded and accompanied by activity of the efferent fibres which persisted as long as the white muscle fibres were contracting. 8. Rhythmical swimming movements were accompanied by a few impulses in the efferent fibres grouped in bursts at the same frequency as the swimming movements. 9. It is concluded that the efferent neurones cannot contribute to a feedback regulatory system because they are not excited by natural stimulation of the lateral-line sense organs. The close correlation found between efferent activity and body movement suggests that the efferent system might operate in a protective manner to prevent the sense organs from being over-stimulated when the fish makes vigorous movements.


1990 ◽  
Vol 4 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Adolph I. Cohen ◽  
Christine Blazynski

AbstractThe exposure to bright light of dark-adapted (DKA) mouse retinas incubated in the dark (DI) in IBMX-containing medium causes a marked loss of cyclic AMP. This light response also occurs if the medium contains 10 mM aspartate or cobaltous ion, agents believed to confine the effects of light to photoreceptors. Thus, the action of light in the presence of either of these agents defines a light-sensitive pool of cyclic AMP in photoreceptors. This pool could also be reduced or eliminated in DKA-DI retinas by nanomolar to micromolar levels of dopamine (if the medium contained SCH23390, a potent antagonist of Dl receptors), thus indicating an agonistic action of dopamine at D2 receptors. The D2 agonists LY171555 (EC50 10 nM) or (+)-3-PPP also reduced the cyclic AMP level in the dark. Of the D2 antagonists tested, the butyrophenone spiperone (in the presence of the 5HT-2 blocker ketanserin) countered the action of the D2 agonists but substituted benzamides were ineffective. Consistently, the D2 agonists had no effect on cyclic AMP levels of mutant retinas lacking photoreceptors (rd'rd), but reduced cyclic AMP in DKA-Dl glutamate-modified retinas which exhibit a major loss of inner retinal neurons without apparent loss of photoreceptors. The Dl antagonist SCH23390 only reduced cyclic AMP levels of DKA-DI retinas when cyclic AMP levels had been elevated by adding dopamine to the incubation medium.


1990 ◽  
Vol 259 (5) ◽  
pp. H1511-H1517 ◽  
Author(s):  
N. Toda ◽  
T. Okamura

Relaxant responses to transmural electrical stimulation and nicotine of cerebral artery strips obtained from dogs and Japanese monkeys were abolished by tetrodotoxin and hexamethonium, respectively, and suppressed by treatment with NG-monomethyl-L-arginine (L-NMMA), a nitric oxide (NO) synthesis inhibitor. The inhibitory effect was prevented and reversed by L-arginine but not by D-arginine. The relaxations suppressed by L-NMMA were not increased by exogenously applied NO. Endothelium denudation did not alter the response to transmural stimulation and nicotine or the inhibitory effect of L-NMMA. D-NMMA did not inhibit the response to vasodilator nerve stimulation. Dog coronary artery relaxations caused by transmural stimulation were not inhibited by L-NMMA but reversed to contractions by propranolol. Relaxations caused by substance P of dog cerebral arteries treated with indomethacin were dependent on endothelium and inhibited by L-NMMA, whereas those by NO and nitroglycerin, endothelium-independent relaxations, were unaffected. It is concluded that chemical and electrical stimulation of vasodilator nerves relaxes dog and monkey cerebral arteries, possibly by a mediation of NO rather than a stimulating action of NO on the release of vasodilator transmitter. Endothelium-dependent relaxations by substance P of dog cerebral arteries appear to be mediated by NO.


Sign in / Sign up

Export Citation Format

Share Document