Autoregulation of CCL26 synthesis and secretion in A549 cells: a possible mechanism by which alveolar epithelial cells modulate airway inflammation

2005 ◽  
Vol 289 (3) ◽  
pp. L478-L488 ◽  
Author(s):  
B. O. Abonyo ◽  
M. S. Alexander ◽  
A. S. Heiman

Eotaxins (CCL11, CCL24, CCL26) originating from airway epithelial cells and leukocytes have been detected in bronchoalveolar lavage of asthmatics. Although the alveolar epithelium is the destination of uncleared allergens and other inflammatory products, scanty information exists on their contribution to the generation and regulation of the eotaxins. We envisioned a state whereby alveolar type II cells, a known source of other inflammatory proteins, could be involved in both the production and regulation of CCL24 and CCL26. Herein, we demonstrated that all three eotaxins are constitutively expressed in A549 cells. IL-4 and IL-13 stimulated a concentration-dependent secretion of CCL24 and CCL26. The cytokines did not act synergistically. Cycloheximide and actinomycin D abrogated IL-4- and IL-13-dependent CCL26 but not CCL24 secretion. Both IL-13 and IL-4 stimulated CCL26 synthesis that was inhibited in a concentration-dependent manner by CCL26 but not CCL24. Only CCL26 reduced expression of CCR3 receptors by 30–40%. On the other hand, anti-CCR3 pretreatment reduced IL-4+IL-13-dependent CCL26 secretion, implying autoregulation. A CCR3-specific antagonist (SB-328437) significantly decreased IL-4-dependent synthesis and release of CCL26. Eosinophils treated with medium from IL-4-stimulated A549 cells preincubated with anti-CCL26 showed a marked decrease of superoxide anion production compared with anti-CCL24 treated. These results suggest that CCL26 is a major eotaxin synthesized and released by alveolar epithelial cells and is involved in autoregulation of CCR3 receptors and other eotaxins. This CCL26-CCR3 ligand-receptor system may be an attractive target for development of therapeutics that limits progress of inflammation in airway disease.

1997 ◽  
Vol 273 (4) ◽  
pp. L797-L806 ◽  
Author(s):  
Heimo Mairbäurl ◽  
Ralf Wodopia ◽  
Sigrid Eckes ◽  
Susanne Schulz ◽  
Peter Bärtsch

A reduced cation reabsorption across the alveolar epithelium decreases water reabsorption from the alveoli and could diminish clearing accumulated fluid. To test whether hypoxia restricts cation transport in alveolar epithelial cells, cation uptake was measured in rat lung alveolar type II pneumocytes (AII cells) in primary culture and in A549 cells exposed to normoxia and hypoxia. In AII and A549 cells, hypoxia caused a[Formula: see text]-dependent inhibition of the Na-K pump, of Na-K-2Cl cotransport, and of total and amiloride-sensitive22Na uptake. Nifedipine failed to prevent hypoxia-induced transport inhibition in both cell types. In A549 cells, the inhibition of the Na-K pump and Na-K-2Cl cotransport occurred within ∼30 min of hypoxia, was stable >20 h, and was reversed by 2 h of reoxygenation. There was also a reduction in cell membrane-associated Na-K-ATPase and a decrease in Na-K-2Cl cotransport flux after full activation with calyculin A, indicating a decreased transport capacity. [14C]serine incorporation into cell proteins was reduced in hypoxic A549 cells, but inhibition of protein synthesis with cycloheximide did not reduce ion transport. In AII and A549 cells, ATP levels decreased slightly, and ADP and the ATP-to-ADP ratio were unchanged after 4 h of hypoxia. In A549 cells, lactate, intracellular Na, and intracellular K were unchanged. These results indicate that hypoxia inhibits apical Na entry pathways and the basolateral Na-K pump in A549 cells and rat AII pneumocytes in culture, indicating a hypoxia-induced reduction of transepithelial Na transport and water reabsorption by alveolar epithelium. If similar changes occur in vivo, the impaired cation transport across alveolar epithelial cells might contribute to the formation of hypoxic pulmonary edema.


1994 ◽  
Vol 267 (3) ◽  
pp. L263-L270 ◽  
Author(s):  
D. Rotin ◽  
B. J. Goldstein ◽  
C. A. Fladd

The role of tyrosine kinases in regulating cell proliferation, differentiation, and development has been well documented. In contrast, little is known about the role of protein tyrosine phosphatases (PTPs) in mammalian development. To identify PTPs that may be involved in lung development, we have isolated (by polymerase chain reaction) from rat fetal alveolar epithelial cells a cDNA fragment which was identified as the recently cloned tyrosine phosphatase LAR-PTP2. Analysis of tissue expression of LAR-PTP2 identified a approximately 7.5-kb message in the lung, which is also expressed weakly in brain, and an alternatively spliced approximately 6.0-kb message (LAR-PTP2B) expressed in brain. In the fetal lung, LAR-PTP2 was preferentially expressed in lung epithelial (but not fibroblast) cells grown briefly in primary culture, and its expression was tightly regulated during lung development, peaking at 20 days of gestational age (term = 22 days), when mature alveolar type II epithelium first appears. Accordingly, immunoblot analysis revealed high expression of endogenous LAR-PTP2 protein in alveolar epithelial cells from 21-day gestation fetuses. LAR-PTP2 was also expressed in lungs of newborn rats, but transcripts (and protein) were barely detectable in adult lungs and in the nonproliferating adult alveolar type II cells. Interestingly, expression was restored in the transformed adult type II-like A549 cells. These results suggest that LAR-PTP2 may play a role in the proliferation and/or differentiation of epithelial cells during lung development.


2009 ◽  
Vol 20 (11) ◽  
pp. 2755-2765 ◽  
Author(s):  
Sivaraj Sivaramakrishnan ◽  
Jaime L. Schneider ◽  
Albert Sitikov ◽  
Robert D. Goldman ◽  
Karen M. Ridge

Keratin intermediate filaments (KIFs) form a fibrous polymer network that helps epithelial cells withstand external mechanical forces. Recently, we established a correlation between the structure of the KIF network and its local mechanical properties in alveolar epithelial cells. Shear stress applied across the cell surface resulted in the structural remodeling of KIF and a substantial increase in the elastic modulus of the network. This study examines the mechanosignaling that regulates the structural remodeling of the KIF network. We report that the shear stress–mediated remodeling of the KIF network is facilitated by a twofold increase in the dynamic exchange rate of KIF subunits, which is regulated in a PKC ζ and 14-3-3–dependent manner. PKC ζ phosphorylates K18pSer33, and this is required for the structural reorganization because the KIF network in A549 cells transfected with a dominant negative PKC ζ, or expressing the K18Ser33Ala mutation, is unchanged. Blocking the shear stress–mediated reorganization results in reduced cellular viability and increased apoptotic levels. These data suggest that shear stress mediates the phosphorylation of K18pSer33, which is required for the reorganization of the KIF network, resulting in changes in mechanical properties of the cell that help maintain the integrity of alveolar epithelial cells.


2014 ◽  
Vol 306 (1) ◽  
pp. L88-L100 ◽  
Author(s):  
Sharon Mumby ◽  
Latha Ramakrishnan ◽  
Timothy W. Evans ◽  
Mark J. D. Griffiths ◽  
Gregory J. Quinlan

Diffuse alveolar hemorrhage is characterized by the presence of red blood cells and free hemoglobin in the alveoli and complicates a number of serious medical and surgical lung conditions including the pulmonary vasculitides and acute respiratory distress syndrome. In this study we investigated the hypothesis that exposure of human alveolar epithelial cells to hemoglobin and its breakdown products regulates chemokine release via iron- and oxidant-mediated activation of the transcription factor NF-κB. Methemoglobin alone stimulated the release of IL-8 and MCP-1 from A549 cells via activation of the NF-κB pathway; additionally, IL-8 required ERK activation and MCP-1 required JNK activation. Neither antioxidants nor iron chelators and knockdown of ferritin heavy and light chains affected these responses, indicating that iron and reactive oxygen species are not involved in the response of alveolar epithelial cells to methemoglobin. Incubation of primary cultures of human alveolar type 2 cells with methemoglobin resulted in a similar pattern of chemokine release and signaling pathway activation. In summary, we have shown for the first time that methemoglobin induced chemokine release from human lung epithelial cells independent of iron- and redox-mediated signaling involving the activation of the NF-κB and MAPK pathways. Decompartmentalization of hemoglobin may be a significant proinflammatory stimulus in a variety of lung diseases.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenzhen Ma ◽  
Chunyan Ma ◽  
Qingfeng Zhang ◽  
Yang Bai ◽  
Kun Mu ◽  
...  

AbstractAlveolar epithelial cells play an essential role in the initiation and progression of pulmonary fibrosis, and the occurrence of epithelial–mesenchymal transition (EMT) may be the early events of pulmonary fibrosis. Recent studies have shown chemokines are involved in the complex process of EMT, and CXC chemokine ligand 16 (CXCL16) is also associated with many fibrosis-related diseases. However, whether CXCL16 is dysregulated in alveolar epithelial cells and the role of CXCL16 in modulating EMT in pulmonary fibrosis has not been reported. In this study, we found that CXCL16 and its receptor C-X-C motif chemokine receptor 6 (CXCR6) were upregulated in bleomycin induced EMT in human alveolar type II-like epithelial A549 cells. Synergistic effect of CXCL16 and bleomycin in promoting EMT occurrence, extracellular matrix (ECM) excretion, as well as the pro-inflammatory and pro-fibrotic cytokines productions in A549 cells were observed, and those biological functions were impaired by CXCL16 siRNA. We further confirmed that CXCL16 regulated EMT in A549 cells via the TGF-β1/Smad3 pathways. These results indicated that CXCL16 could promote pulmonary fibrosis by promoting the process of EMT via the TGF-β1/Smad3 signaling pathway.


2000 ◽  
Vol 279 (6) ◽  
pp. L1110-L1119 ◽  
Author(s):  
Ralf Wodopia ◽  
Hyun Soo Ko ◽  
Javiera Billian ◽  
Rudolf Wiesner ◽  
Peter Bärtsch ◽  
...  

Fluid reabsorption from alveolar space is driven by active Na reabsorption via epithelial Na channels (ENaCs) and Na-K-ATPase. Both are inhibited by hypoxia. Here we tested whether hypoxia decreases Na transport by decreasing the number of copies of transporters in alveolar epithelial cells and in lungs of hypoxic rats. Membrane fractions were prepared from A549 cells exposed to hypoxia (3% O2) as well as from whole lung tissue and alveolar type II cells from rats exposed to hypoxia. Transport proteins were measured by Western blot analysis. In A549 cells, α1- and β1-Na-K-ATPase, Na/K/2Cl cotransport, and ENaC proteins decreased during hypoxia. In whole lung tissue, α1-Na-K-ATPase and Na/K/2Cl cotransport decreased. α- and β-ENaC mRNAs also decreased in hypoxic lungs. Similar results were seen in alveolar type II cells from hypoxic rats. These results indicate a slow decrease in the amount of Na-transporting proteins in alveolar epithelial cells during exposure to hypoxia that also occurs in vivo in lungs from hypoxic animals. The reduced number of transporters might account for the decreased transport activity and impaired edema clearance in hypoxic lungs.


2004 ◽  
Vol 287 (1) ◽  
pp. L104-L110 ◽  
Author(s):  
Xiaohui Fang ◽  
Yuanlin Song ◽  
Rachel Zemans ◽  
Jan Hirsch ◽  
Michael A. Matthay

Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-μm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 ± 115 Ω·cm2) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 μl of culture medium containing 0.5 μCi of 131I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 ± 0.34% over 24 h. The change in concentration of 131I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 μl·cm−2·h−1. cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.


2013 ◽  
Vol 305 (1) ◽  
pp. L33-L41 ◽  
Author(s):  
Bruce D. Uhal ◽  
Hang Nguyen ◽  
MyTrang Dang ◽  
Indiwari Gopallawa ◽  
Jing Jiang ◽  
...  

Earlier work showed that apoptosis of alveolar epithelial cells (AECs) in response to endogenous or xenobiotic factors is regulated by autocrine generation of angiotensin (ANG) II and its counterregulatory peptide ANG1–7. Mutations in surfactant protein C (SP-C) induce endoplasmic reticulum (ER) stress and apoptosis in AECs and cause lung fibrosis. This study tested the hypothesis that ER stress-induced apoptosis of AECs might also be regulated by the autocrine ANGII/ANG1–7 system of AECs. ER stress was induced in A549 cells or primary cultures of human AECs with the proteasome inhibitor MG132 or the SP-C BRICHOS domain mutant G100S. ER stress activated the ANGII-generating enzyme cathepsin D and simultaneously decreased the ANGII-degrading enzyme ACE-2, which normally generates the antiapoptotic peptide ANG1–7. TAPI-2, an inhibitor of ADAM17/TACE, significantly reduced both the activation of cathepsin D and the loss of ACE-2. Apoptosis of AECs induced by ER stress was measured by assays of mitochondrial function, JNK activation, caspase activation, and nuclear fragmentation. Apoptosis induced by either MG132 or the SP-C BRICHOS mutant G100S was significantly inhibited by the ANG receptor blocker saralasin and was completely abrogated by ANG1–7. Inhibition by ANG1–7 was blocked by the specific mas antagonist A779. These data show that ER stress-induced apoptosis is mediated by the autocrine ANGII/ANG1–7 system in human AECs and demonstrate effective blockade of SP-C mutation-induced apoptosis by ANG1–7. They also suggest that therapeutic strategies aimed at administering ANG1–7 or stimulating ACE-2 may hold potential for the management of ER stress-induced fibrotic lung disorders.


1990 ◽  
Vol 68 (4) ◽  
pp. 1354-1359 ◽  
Author(s):  
R. K. Merchant ◽  
M. W. Peterson ◽  
G. W. Hunninghake

Alveolar epithelial cell injury and increased alveolar-capillary membrane permeability are important features of acute silicosis. To determine whether silica particles contribute directly to this increased permeability, we measured paracellular permeability of rat alveolar epithelium after exposure to silica, in vitro, using markers of the extracellular space. Silica (Minusil) markedly increased permeability in a dose- and time-dependent manner. This was not the result of cytolytic injury, because lactate dehydrogenase release from monolayers exposed to silica was not increased. Pretreatment of the silica with serum, charged dextrans, or aluminum sulfate blocked the increase in permeability. Scanning electron microscopy demonstrated adherence of the silica to the surface of the alveolar epithelial cells. Thus silica can directly increase permeability of alveolar epithelium.


Sign in / Sign up

Export Citation Format

Share Document