Impaired nitric oxide synthase-2 signaling pathway in cystic fibrosis airway epithelium

2004 ◽  
Vol 287 (2) ◽  
pp. L374-L381 ◽  
Author(s):  
Shuo Zheng ◽  
Weiling Xu ◽  
Santanu Bose ◽  
Amiya K. Banerjee ◽  
S. Jaharul Haque ◽  
...  

Cystic fibrosis (CF) airway epithelial cells are more susceptible to viral infection due to impairment of the innate host defense pathway of nitric oxide (NO). NO synthase-2 (NOS2) expression is absent, and signal transducer and activator of transcription (STAT) 1 activation is reduced in CF. We hypothesized that the IFN-γ signaling pathway, which leads to NOS2 gene induction in CF airway epithelial cells, is defective. In contrast to a lack of NOS2 induction, the major histocompatibility complex class 2, an IFN-γ-regulated delayed-responsive gene, is similarly induced in CF and non-CF airway epithelial (NL) cells, suggesting an NOS2-specific defect in the IFN-γ signaling pathway. STAT1 and activator protein-1, both required for NOS2 gene expression, interact normally in CF cells. Protein inhibitor of activated STAT1 is not increased in CF cells. IFN-γ induces NOS2 expression in airway epithelial cells through an autocrine mechanism involving synthesis and secretion of IFN-γ-inducible mediator(s), which activates STAT1. Here, CF cells secrete IFN-γ-inducible factor(s), which stimulate NOS2 expression in NL cells, but not in CF cells. In contrast, IFN-γ-inducible factor(s) similarly inhibit virus in CF and NL cells. Thus autocrine activation of NOS2 is defective in CF cells, but IFN-γ induction of antiviral host defense is intact.

2015 ◽  
Vol 309 (4) ◽  
pp. L348-L359 ◽  
Author(s):  
Danielle O'Connell ◽  
Belaid Bouazza ◽  
Blerina Kokalari ◽  
Yassine Amrani ◽  
Alaa Khatib ◽  
...  

Although the majority of patients with asthma are well controlled by inhaled glucocorticoids (GCs), patients with severe asthma are poorly responsive to GCs. This latter group is responsible for a disproportionate share of health care costs associated with asthma. Recent studies in immune cells have incriminated interferon-γ (IFN-γ) as a possible trigger of GC insensitivity in severe asthma; however, little is known about the role of IFN-γ in modulating GC effects in other clinically relevant nonimmune cells, such as airway epithelial cells. We hypothesized that IFN-γ-induced JAK/STAT-associated signaling pathways in airway epithelial cells are insensitive to GCs and that strategies aimed at inhibiting JAK/STAT pathways can restore steroid responsiveness. Using Western blot analysis we found that all steps of the IFN-γ-induced JAK/STAT signaling pathway were indeed GC insensitive. Transfection of cells with reporter plasmid showed IFN-γ-induced STAT1-dependent gene transcription to be also GC insensitive. Interestingly, real-time PCR analysis showed that IFN-γ-inducible genes (IIGs) were differentially affected by GC, with CXCL10 being GC sensitive and CXCL11 and IFIT2 being GC insensitive. Further investigation showed that the differential sensitivity of IIGs to GC was due to their variable dependency to JAK/STAT vs. NF-κB signaling pathways with GC-sensitive IIGs being more NF-κB dependent and GC-insensitive IIGs being more JAK/STAT dependent. Importantly, transfection of cells with siRNA-STAT1 was able to restore steroid responsiveness of GC-insensitive IIGs. Taken together, our results show the insensitivity of IFN-γ-induced JAK/STAT signaling pathways to GC effects in epithelial cells and also suggest that targeting STAT1 could restore GC responsiveness in patients with severe asthma.


1995 ◽  
Vol 268 (1) ◽  
pp. C243-C251 ◽  
Author(s):  
M. E. Egan ◽  
E. M. Schwiebert ◽  
W. B. Guggino

When nonepithelial cell types expressing the delta F508-cystic fibrosis transmembrane conductance regulator (CFTR) mutation are grown at reduced temperatures, the mutant protein can be properly processed. The effect of low temperatures on Cl- channel activity in airway epithelial cells that endogenously express the delta F508-CFTR mutation has not been investigated. Therefore, we examined the effect of incubation temperature on both CFTR and outwardly rectifying Cl- channel (ORCC) activity in normal, in cystic fibrosis (CF)-affected, and in wild-type CFTR-complemented CF airway epithelia with use of a combination of inside-out and whole cell patch-clamp recording, 36Cl- efflux assays, and immunocytochemistry. We report that incubation of CF-affected airway epithelial cells at 25-27 degrees C is associated with the appearance of a protein kinase A-stimulated CFTR-like Cl- conductance. In addition to the appearance of CFTR Cl- channel activity, there is, however, a decrease in the number of active ORCC when cells are grown at 25-27 degrees C, suggesting that the decrease in incubation temperature may be associated with multiple alterations in ion channel expression and/or regulation in airway epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document