nos2 expression
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Alexander T Sougiannis ◽  
Brandon N. VanderVeen ◽  
Ioulia Chatzistamou ◽  
Jason L Kubinak ◽  
Mitzi Nagarkatti ◽  
...  

Emodin, a natural anthraquinone, has been shown to have anti-tumorigenic properties and may be an effective therapy for colorectal cancer (CRC). However, its clinical development has been hampered by a poor understanding of its mechanism of action. The purpose of this study was to 1) evaluate the efficacy of emodin in mouse models of intestinal/colorectal cancer and 2) to examine the impact of emodin on macrophage behavior in the context of CRC. We utilized a genetic model of intestinal cancer (ApcMin/+) and a chemically induced model of CRC (AOM/DSS). Emodin was administered orally (40 mg/kg or 80 mg/kg in AOM/DSS and 80mg/kg in ApcMin/+) 3x/week to observe its preventative effects. Emodin reduced polyp count and size in both rodent models (p<0.05). We further analyzed the colon microenvironment of AOM/DSS mice and found that mice treated with emodin exhibited lower pro-tumorigenic M2-like macrophages and a reduced ratio of M2/M1 macrophages within the colon (p<0.05). Despite this, we did not detect any significant changes in M2-associated cytokines (IL10, IL4, and Tgfb1) nor M1-associated cytokines (IL6, TNFα, IL1β, and IFNγ) within excised polyps. However, there was a significant increase in NOS2 expression (M1 marker) in mice treated with 80 mg/kg emodin (p<0.05). To confirm emodin's effects on macrophages, we exposed bone marrow-derived macrophages (BMDMs) to C26 colon cancer cell conditioned media. Supporting our in vivo data, emodin reduced M2-like macrophages. Overall, these data support the development of emodin as a natural compound for prevention of CRC given its ability to target pro-tumor macrophages.


Author(s):  
Othman E. Othman ◽  
Noha M. Osman ◽  
Nadia A. Abo El-Maaty ◽  
Eman R. Mahfouz

Background and Aim: Uterine lumen contamination with bacteria is ubiquitous in buffalo after parturition. Nearly one-third of these infected animals develop endometritis which leads to reduced fertility. The present study aimed to evaluate the expressions of IFN-γ and NOS2 genes in uterine tissue of buffaloes with endometritis and comparing them with those in healthy animals using RT-qPCR Materials and Methods: Uterine samples were collected from 50 apparently healthy and 50 clinically infected buffaloes. RNA was extracted from the collected buffalo's uteri and cDNA was synthesized from extracted RNA. Quantitative Real Time PCR technique was performed using this synthesized cDNA. Results: Apparent up-regulation of both genes mRNA expression was recorded in endometritis-infected animals with 8.3-folds for IFN-γ and 9.99-folds for NOS2 (P<0.001). Conclusion: The upregulation of IFN-γ and NOS2 expression in the uterine tissue of endometritis-infected buffaloes can be used as a scale for measuring the efficiency of drugs used for endometritis treatment.


Author(s):  
Amrita Kar ◽  
Adithyan Jayaraman ◽  
Avanthika Kumar ◽  
Santanu Kar Mahapatra

Immune metabolic adaptation in macrophages by intracellular parasites is recognized to play a crucial role during Leishmania infection. However, there is little accessible information about changes in a metabolic switch in L. donovani infected macrophages. In previous studies, we have reported on the anti-leishmanial synergic effect of eugenol oleate with amphotericin B. In the present study, we demonstrated that glycolytic enzymes were highly expressed in infected macrophages during combinatorial treatment of eugenol oleate (2.5 µM) and amphotericin B (0.3125 µM). Additionally, we found that the biphasic role in arachidonic acid metabolite, PGE2, and LTB4, is released during this treatment. In vitro data showed that COX-2 mediated PGE2 synthesis increased significantly (p&lt;0.01) in infected macrophages. Not only was the level of prostaglandin synthesis decreased 4.38 fold in infected macrophages after treatment with eugenol oleate with amphotericin B. The mRNA expression of PTGES, MPGES, and PTGER4 were also moderately expressed in infected macrophages, and found to be decreased in combinatorial treatment. In addition, NOS2 expression was activated by the phosphorylation of p38MAPK when combination-treated macrophages were promoted to kill intracellular parasites. The findings of the present study indicate that the synergism between eugenol oleate and amphotericin B could play an important role in immune metabolism adaptation with a concomitant increase in host immune response against the intracellular pathogen, L. donovani.


2020 ◽  
Vol 66 (5) ◽  
pp. 30-37
Author(s):  
I.S. Fomenko ◽  
◽  
Т.I. Bondarchuk ◽  
A.S. Huet ◽  
А.Ya. Sklyarov ◽  
...  

The role of gaseous mediators NO and H2S and the cyclooxygenase/prostaglandins system in large intestinal mucosa was investigated in experiments on white rats under condition of experimental ulcerative colitis caused by introduction of acetic acid. Ulcerative colitis was accompanied by the formation of lesions of mucosal barrier of large intestine and the presence of ulcerative defects. The administration of H2S-releasing compound ATB-346 on the background of colitis significantly decreases the area of lesions as compared to naproxen or celecoxib action, that is the most probably caused by the action of H2S. Nonselective cyclooxygenase inhibition by naproxen was accompanied by the decrease of H2S concentration in blood serum and the level of gene Cbs expression in large intestinal mucosa, whereas under the condition of АТВ-346 action the above parameters were close to their normal values. Both naproxen and АТВ-346 decreased the level of gene Nos2 expression and activity of iNOS, which was sharply increased in colitis. Thus, the action of the naproxen derivative H2S releasing compound АТВ-346 is mainly caused by the action of hydrogen sulfide and its influence on іNOS system, and is manifested by a better cytoprotective effect as compared to naproxen action on the background of experimental ulcerative colitis.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 887
Author(s):  
Sergio Rius-Pérez ◽  
Isabel Torres-Cuevas ◽  
María Monsalve ◽  
Francisco J. Miranda ◽  
Salvador Pérez

Acute pancreatitis is an inflammatory process of the pancreatic tissue that often leads to distant organ dysfunction. Although liver injury is uncommon in acute pancreatitis, obesity is a risk factor for the development of hepatic complications. The aim of this work was to evaluate the role of PGC-1α in inflammatory response regulation in the liver and its contribution to the detrimental effect of obesity on the liver during acute pancreatitis. For this purpose, we induced acute pancreatitis by cerulein in not only wild-type (WT) and PGC-1α knockout (KO) mice, but also in lean and obese mice. PGC-1α levels were up-regulated in the mice livers with pancreatitis. The increased PGC-1α levels were bound to p65 to restrain its transcriptional activity toward Nos2. Lack of PGC-1α favored the assembly of the p65/phospho-STAT3 complex, which promoted Nos2 expression during acute pancreatitis. The increased transcript Nos2 levels and the pro-oxidant liver status caused by the down-regulated expression of the PGC-1α-dependent antioxidant genes enhanced nitrosative stress and decreased energy charge in the livers of the PGC-1α KO mice with pancreatitis. It is noteworthy that the PGC-1α levels lowered in the obese mice livers, which increased the Nos2 mRNA expression and protein nitration levels and decreased energy charge during pancreatitis. In conclusion, obesity impairs PGC-1α up-regulation in the liver to cause nitrosative stress during acute pancreatitis.


2020 ◽  
Vol 21 (12) ◽  
pp. 4509 ◽  
Author(s):  
Iwona Bednarz-Misa ◽  
Paulina Fortuna ◽  
Dorota Diakowska ◽  
Natalia Jamrozik ◽  
Małgorzata Krzystek-Korpacka

Gastric (GC) and esophageal (EC) cancers are highly lethal. Better understanding of molecular abnormalities is needed for new therapeutic targets and biomarkers to be found. Expression of 18 cancer-related genes in 31 paired normal-tumor samples was quantified by reversely-transcribed quantitative polymerase chain reaction (RTqPCR) and systemic concentration of 27 cytokines/chemokines/growth factors in 195 individuals was determined using Luminex xMAP technology. Only Ki67, CLDN2, and BCLxL were altered in GC while Ki67, CDKN1A, ODC1, SLC2A1, HIF1A, VEGFA, NOS2, CCL2, PTGS2, IL10, IL10Ra, and ACTA2 were changed in EC. The relatively unaltered molecular GC landscape resulted from high expression of BCLxL, CDKN1A, BCL2, Ki67, HIF1A, VEGFA, ACTA2, TJP1, CLDN2, IL7Ra, ODC1, PTGS2, and CCL2 in non-cancerous tissue. The NOS2 expression and IL-4, IL-9, FGF2, and RANTES secretion were higher in cardiac than non-cardiac GC. Four-cytokine panels (interleukin (IL)-1β/IL-1ra/IL-6/RANTES or IL-1β/IL-6/IL-4/IL-13) differentiated GC from benign conditions with 87–89% accuracy. Our results showed increased proliferative, survival, inflammatory and angiogenic capacity in gastric tumor-surrounding tissue, what might contribute to GC aggressiveness and facilitate cancer recurrence. Further studies are needed to determine the CLDN2 and NOS2 suitability as candidate molecular targets in GC and cardiac GC, respectively, and discern the role of CLDN2 or to verify IL-1β/IL-1ra/IL-6/RANTES or IL-1β/IL-6/IL-4/IL-13 usefulness as differential biomarkers.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 865 ◽  
Author(s):  
Morgana K.B. Prado ◽  
Caroline Fontanari ◽  
Camila O.S. Souza ◽  
Luiz G. Gardinassi ◽  
Karina F. Zoccal ◽  
...  

Histoplasma capsulatum is the agent of histoplasmosis, one of the most frequent mycoses in the world. The infection initiates with fungal spore inhalation, transformation into yeasts in the lungs and establishment of a granulomatous disease, which is characterized by a Th1 response. The production of Th1 signature cytokines, such as IFN-γ, is crucial for yeast clearance from the lungs, and to prevent dissemination. Recently, it was demonstrated that IL-17, a Th17 signature cytokine, is also important for fungal control, particularly in the absence of Th1 response. IL-22 is another cytokine with multiple functions on host response and disease progression. However, little is known about the role of IL-22 during histoplasmosis. In this study, we demonstrated that absence of IL-22 affected the clearance of yeasts from the lungs and increased the spreading to the spleen. In addition, IL-22 deficient mice (Il22−/−) succumbed to infection, which correlated with reductions in the numbers of CD4+ IFN-γ+ T cells, reduced IFN-γ levels, and diminished nitric oxide synthase type 2 (NOS2) expression in the lungs. Importantly, treatment with rIFN-γ mitigated the susceptibility of Il22−/− mice to H. capsulatum infection. These data indicate that IL-22 is crucial for IFN-γ/NO production and resistance to experimental histoplasmosis.


2020 ◽  
Vol 44 (2) ◽  
pp. 83-88
Author(s):  
Malena Boylan ◽  
Megan B. O’Brien ◽  
Charlotte Beynon ◽  
Kieran G. Meade

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Melanie A. Eshelman ◽  
Stephen M. Matthews ◽  
Emily M. Schleicher ◽  
Rebecca M. Fleeman ◽  
Yuka Imamura Kawasawa ◽  
...  

Abstract Tristetraprolin (TTP), encoded by the Zfp36 gene, is a zinc-finger protein that regulates RNA stability primarily through association with 3′ untranslated regions (3′ UTRs) of target mRNAs. While TTP is expressed abundantly in the intestines, its function in intestinal epithelial cells (IECs) is unknown. Here we used a cre-lox system to remove Zfp36 in the mouse epithelium to uncover a role for TTP in IECs and to identify target genes in these cells. While TTP was largely dispensable for establishment and maintenance of the colonic epithelium, we found an expansion of the proliferative zone and an increase in goblet cell numbers in the colon crypts of Zfp36ΔIEC mice. Furthermore, through RNA-sequencing of transcripts isolated from the colons of Zfp36fl/fl and Zfp36ΔIEC mice, we found that expression of inducible nitric oxide synthase (iNos or Nos2) was elevated in TTP-knockout IECs. We demonstrate that TTP interacts with AU-rich elements in the Nos2 3′ UTR and suppresses Nos2 expression. In comparison to control Zfp36fl/fl mice, Zfp36ΔIEC mice were less susceptible to dextran sodium sulfate (DSS)-induced acute colitis. Together, these results demonstrate that TTP in IECs targets Nos2 expression and aggravates acute colitis.


Sign in / Sign up

Export Citation Format

Share Document