scholarly journals The p66Shc adapter protein regulates the morphogenesis and epithelial maturation of fetal mouse lungs

2014 ◽  
Vol 306 (4) ◽  
pp. L316-L325 ◽  
Author(s):  
M. K. Lee ◽  
S. M. Smith ◽  
Maalika M. Banerjee ◽  
Changgong Li ◽  
Parviz Minoo ◽  
...  

Many signaling pathways are mediated by Shc adapter proteins that, in turn, are expressed as three isoforms with distinct functions. The p66Shc isoform antagonizes proliferation, regulates oxidative stress, and mediates apoptosis. It is highly expressed in the canalicular but not the later stages of mouse lung development, and its expression persists in bronchopulmonary dysplasia, a chronic disease associated with premature birth. These observations suggest that p66Shc has a developmental function. However, constitutive p66Shc deletion yields no morphological phenotype, and the structure of the Shc gene precludes its inducible deletion. To elucidate its function in lung development, we transfected p66Shc or nonsilencing small-interfering RNA (siRNA) into the epithelia of embryonic day 11 mouse lungs that were then cultured for 3 days and analyzed morphometrically. To assess cellular proliferation and epithelial differentiation, lung explants were immunostained and immunoblotted for p66Shc, proliferating cell nuclear antigen (PCNA), the proximal airway differentiation antigens Clara cell 10-kDa protein (CC10) and thyroid transcription factor (TTF)-1, and the alveolar surfactant proteins (SP)-A, -B, and -C. Explants transfected with nonsilencing siRNA demonstrated specific epithelial uptake and normal morphological development relative to uninjected controls. In contrast, transfection with p66Shc siRNA significantly increased lumenal cross-sectional areas, decreased branching, and increased epithelial proliferation ( P < 0.05 for all). Relative to controls, the expression of SP-B, SP-C, CC10, and TTF-1 was decreased by p66Shc knockdown. SP-A was not expressed in either control or treated lungs. These data suggest that p66Shc attenuates epithelial proliferation while promoting both distal and proximal epithelial maturation.

Author(s):  
Rashika Joshi ◽  
Matthew R. Batie ◽  
Qiang Fan ◽  
Brian Michael Varisco

Most lung development occurs in the context of cyclic stretch. Alteration of the mechanical microenvironment is a common feature of many pulmonary diseases with congenital diaphragmatic hernia (CDH) and fetal tracheal occlusion (FETO, a therapy for CDH) being extreme examples with changes in lung structure, cell differentiation and function. To address limitations in cell culture and in vivo mechanotransductive models we developed two mouse lung organoid (mLO) mechanotransductive models using postnatal day 5 (PND5) mouse lung CD326-positive cells and fibroblasts subjected to increased, decreased, and cyclic strain. In the first model, mLOs were exposed to forskolin (FSK) and/or disrupted (DIS) and evaluated at 20 hours. mLO cross-sectional area changed by +59%, +24% and -68% in FSK, control, and DIS mLOs respectively. FSK-treated organoids had twice as many proliferating cells as other organoids. In the second model, 20 hours of 10.25% biaxial cyclic strain increased the mRNAs of lung mesenchymal cell lineages compared to static stretch and no stretch. Cyclic stretch increased TGF-β and integrin-mediated signaling with upstream analysis indicating roles for histone deacetylases, microRNAs, and long non-coding RNAs. Cyclic stretch mLOs increased αSMA- and αSMA-PDGFRα-double positive cells compared to no stretch and static stretch mLOs. In this PND5 mLO mechanotransductive model, cell proliferation is increased by static stretch, and cyclic stretch induces mesenchymal gene expression changes important in postnatal lung development.


2017 ◽  
Vol 312 (6) ◽  
pp. L882-L895 ◽  
Author(s):  
Agnieszka Pozarska ◽  
José Alberto Rodríguez-Castillo ◽  
David E. Surate Solaligue ◽  
Aglaia Ntokou ◽  
Philipp Rath ◽  
...  

Postnatal lung maturation generates a large number of small alveoli, with concomitant thinning of alveolar septal walls, generating a large gas exchange surface area but minimizing the distance traversed by the gases. This demand for a large and thin gas exchange surface area is not met in disorders of lung development, such as bronchopulmonary dysplasia (BPD) histopathologically characterized by fewer, larger alveoli and thickened alveolar septal walls. Diseases such as BPD are often modeled in the laboratory mouse to better understand disease pathogenesis or to develop new interventional approaches. To date, there have been no stereology-based longitudinal studies on postnatal mouse lung development that report dynamic changes in alveoli number or alveolar septal wall thickness during lung maturation. To this end, changes in lung structure were quantified over the first 22 mo of postnatal life of C57BL/6J mice. Alveolar density peaked at postnatal day (P)39 and remained unchanged at 9 mo (P274) but was reduced by 22 mo (P669). Alveoli continued to be generated, initially at an accelerated rate between P5 and P14, and at a slower rate thereafter. Between P274 and P669, loss of alveoli was noted, without any reduction in lung volume. A progressive thinning of the alveolar septal wall was noted between P5 and P28. Pronounced sex differences were observed in alveoli number in adult (but not juvenile) mice, when comparing male and female mouse lungs. This sex difference was attributed exclusively to the larger volume of male mouse lungs.


2006 ◽  
Vol 290 (1) ◽  
pp. L32-L40 ◽  
Author(s):  
Richard L. Auten ◽  
Michael A. O'Reilly ◽  
Tim D. Oury ◽  
Eva Nozik-Grayck ◽  
Mary H. Whorton

Transgenic (TG) human (h) extracellular superoxide dismutase (EC-SOD) targeted to type II cells protects postnatal newborn mouse lung development against hyperoxia by unknown mechanisms. Because alveolar development depends on timely proliferation of type II epithelium and differentiation to type I epithelium, we measured proliferation in bronchiolar and alveolar (surfactant protein C-positive) epithelium in air and 95% O2-exposed wild-type (WT) and TG hEC-SOD newborn mice at postnatal days 3, 5, and 7 (P3-P7), traversing the transition from saccular to alveolar stages. We found that TG hEC-SOD ameliorated the 95% O2-impaired bromodeoxyuridine uptake in alveolar and bronchiolar epithelium at P3, but not at P5 and P7, when overall epithelial proliferation rates were lower in air-exposed WT mice. Mouse EC-, CuZn-, and Mn-SOD expression were unaffected by hyperoxia or genotype. TG mice had less DNA damage than 95% O2-exposed WT mice at P3, measured by TdT-mediated dUTP nick end labeling ( P < 0.05). Hyperoxia induced cell-cycle inhibitory protein p21 cip/waf mRNA at P3, WT > TG, P = 0.06. 95% O2 impaired apical expression of type I cell α protein (T1α) in WT but not in TG mice at P3 and increased T1α in WT and TG mice at P7. Reducing the 95% O2-induced impairment of epithelial proliferation at a critical window of lung development was associated with protection against DNA damage and preservation of apical T1α expression at P3.


Genetics ◽  
2005 ◽  
Vol 172 (1) ◽  
pp. 389-399 ◽  
Author(s):  
Rodrigo Fernández-Valdivia ◽  
Ying Zhang ◽  
Sonia Pai ◽  
Michael L. Metzker ◽  
Armin Schumacher

2004 ◽  
Vol 286 (2) ◽  
pp. L293-L300 ◽  
Author(s):  
Wei Shi ◽  
Hui Chen ◽  
Jianping Sun ◽  
Cheng Chen ◽  
Jingsong Zhao ◽  
...  

Early embryonic lung branching morphogenesis is regulated by many growth factor-mediated pathways. Bone morphogenetic protein 4 (BMP4) is one of the morphogens that stimulate epithelial branching in mouse embryonic lung explant culture. To further understand the molecular mechanisms of BMP4-regulated lung development, we studied the biological role of Smad-ubiquitin regulatory factor 1 (Smurf1), an ubiquitin ligase specific for BMP receptor-regulated Smads, during mouse lung development. The temporo-spatial expression pattern of Smurf1 in mouse embryonic lung was first determined by quantitative real-time PCR and immunohistochemistry. Overexpression of Smurf1 in airway epithelial cells by intratracheal introduction of recombinant adenoviral vector dramatically inhibited embryonic day (E) 11.5 lung explant growth in vitro. This inhibition of lung epithelial branching was restored by coexpression of Smad1 or by addition of soluble BMP4 ligand into the culture medium. Studies at the cellular level show that overexpression of Smurf1 reduced epithelial cell proliferation and differentiation, as documented by reduced PCNA-positive cell index and by reduced mRNA levels for surfactant protein C and Clara cell protein 10 expression. Further studies found that overexpression of Smurf1 reduced BMP-specific Smad1 and Smad5, but not Smad8, protein levels. Thus overexpression of Smurf1 specifically promotes Smad1 and Smad5 ubiquitination and degradation in embryonic lung epithelium, thereby modulating the effects of BMP4 on embryonic lung growth.


1993 ◽  
Vol 87 (8) ◽  
pp. 653
Author(s):  
J.R. Foster ◽  
T. Green ◽  
L.L. Smith ◽  
S. Tittensor ◽  
I. Wyatt

2001 ◽  
Vol 49 (12) ◽  
pp. 1593-1603 ◽  
Author(s):  
Leigh-Anne D. Miller ◽  
Susan E. Wert ◽  
Jeffrey A. Whitsett

Expression of sonic hedgehog (Shh) is required for normal development of the lung during embryogenesis. Loss of Shh expression in mice results in tracheoesophageal fistula, lung hypoplasia, and abnormal lung lobulation. To determine whether Shh may play a role later in lung morphogenesis, immunostaining for Shh was performed in mouse lung from embryonic day (E) 10.5 to postnatal day (PD) 24. Shh was detected in the distal epithelium of the developing mouse lung from E10.5 to E16.5. From E16.5 until PD15, Shh was present in epithelial cells in both the peripheral and conducting airways. Although all cells of the developing epithelium uniformly expressed Shh at E10.5, Shh expression was restricted to subsets of epithelial cells by E16.5. Between E16.5 and PD15, non-uniform Shh staining of epithelial cells was observed in the conducting airways in a pattern consistent with the distribution of non-ciliated bronchiolar cells (i.e., Clara cells) and the Clara cell marker CCSP. Shh did not co-localize with hepatocyte nuclear factor/forkhead homologue-4 (HFH-4), β-tubulin, or with the presence of cilia. These results support the concept that Shh plays a distinct regulatory role in the lung later in morphogenesis, when it may influence formation or cytodifferentiation of the conducting airways.


Author(s):  
Qing Miao ◽  
Hui Chen ◽  
Yongfeng Luo ◽  
Joanne Chiu ◽  
Ling Chu ◽  
...  

The TGF-β signaling pathway plays a pivotal role in controlling organogenesis during fetal development. Although the role of TGF-β signaling in promoting lung alveolar epithelial growth has been determined, mesenchymal TGF-β signaling in regulating lung development has not been studied in vivo due to a lack of genetic tools for specifically manipulating gene expression in lung mesenchymal cells. Therefore, the integral roles of TGF-β signaling in regulating lung development and congenital lung diseases are not completely understood. Using a Tbx4 lung enhancer-driven Tet-On inducible Cre transgenic mouse system, we have developed a mouse model in which lung mesenchyme-specific deletion of TGF-β receptor 2 gene (Tgfbr2) is achieved. Reduced airway branching accompanied by defective airway smooth muscle growth and later peripheral cystic lesions occurred when lung mesenchymal Tgfbr2 was deleted from embryonic day 13.5 to 15.5, resulting in postnatal death due to respiratory insufficiency. Although cell proliferation in both lung epithelium and mesenchyme was reduced, epithelial differentiation was not significantly affected. Tgfbr2 downstream Smad-independent ERK1/2 may mediate these mesenchymal effects of TGF-β signaling through the GSK3β--β-catenin--Wnt canonical pathway in fetal mouse lung. Our study suggests that Tgfbr2-mediated TGF-β signaling in prenatal lung mesenchyme is essential for lung development and maturation, and defective TGF-β signaling in lung mesenchyme may be related to abnormal airway branching morphogenesis and congenital airway cystic lesions.


Sign in / Sign up

Export Citation Format

Share Document