T cell depletion protects against alveolar destruction due to chronic cigarette smoke exposure in mice

2013 ◽  
Vol 304 (5) ◽  
pp. L312-L323 ◽  
Author(s):  
Patricia L. Podolin ◽  
Joseph P. Foley ◽  
Donald C. Carpenter ◽  
Brian J. Bolognese ◽  
Gregory A. Logan ◽  
...  

The role of T cells in chronic obstructive pulmonary disease (COPD) is not well understood. We have previously demonstrated that chronic cigarette smoke exposure can lead to the accumulation of CD4+ and CD8+ T cells in the alveolar airspaces in a mouse model of COPD, implicating these cells in disease pathogenesis. However, whether specific inhibition of T cell responses represents a therapeutic strategy has not been fully investigated. In this study inhibition of T cell responses through specific depleting antibodies, or the T cell immunosuppressant drug cyclosporin A, prevented airspace enlargement and neutrophil infiltration in a mouse model of chronic cigarette smoke exposure. Furthermore, individual inhibition of either CD4+ T helper or CD8+ T cytotoxic cells prevented airspace enlargement to a similar degree, implicating both T cell subsets as critical mediators of the adaptive immune response induced by cigarette smoke exposure. Importantly, T cell depletion resulted in significantly decreased levels of the Th17-associated cytokine IL-17A, and of caspase 3 and caspase 7 gene expression and activity, induced by cigarette smoke exposure. Finally, inhibition of T cell responses in a therapeutic manner also inhibited cigarette smoke-induced airspace enlargement, IL-17A expression, and neutrophil influx in mice. Together these data demonstrate for the first time that therapeutic inhibition of T cell responses may be efficacious in the treatment of COPD. Given that broad immunosuppression may be undesirable in COPD patients, this study provides proof-of-concept for more targeted approaches to inhibiting the role of T cells in emphysema development.

1979 ◽  
Vol 149 (1) ◽  
pp. 150-157 ◽  
Author(s):  
P C Doherty ◽  
J C Bennink

BALB/c (H-2Kd-Dd) spleen and lymph node populations were specifically depleted of alloreactive potential by filtration through H-2 different, irradiated recipients. These negatively selected T cells were then stimulated with vaccinia virus in mice expressing the foreign H-2 determinants encountered previously in the filter environment. Strong virus-immune cytotoxic T-cell responses were seen in the context of H-2Kk and H-2Ks, but not 2H-2Kb. The T cells generated were not cross-reactive for the H-2Kk and H-2Kd alleles, and responsiveness was independent of concurrent presence of effector populations operating at H-2D. These findings are consisent with the idea that recognition is mediated via a complex receptor, part of which is specific for virus and part for self H-2. The capacity to interact with allogeneic, virus-infected cells may then reflect aberrant recognition of a virus-H-2-antigen complex by this single, large binding site. For instance, the T cell which would normally recognize H-2Kd-virus x, or H-2Dd-minor histocompatibility antigen Z, may now show specificity for H-2Kk-vaccinia virus. Implications for both the selective role of the thymus and for mechanisms of tolerance are discussed.


2015 ◽  
Vol 90 (5) ◽  
pp. 2208-2220 ◽  
Author(s):  
Srinika Ranasinghe ◽  
Damien Z. Soghoian ◽  
Madelene Lindqvist ◽  
Musie Ghebremichael ◽  
Faith Donaghey ◽  
...  

ABSTRACTAntigen-specific CD4+T helper cell responses have long been recognized to be a critical component of effective vaccine immunity. CD4+T cells are necessary to generate and maintain humoral immune responses by providing help to antigen-specific B cells for the production of antibodies. In HIV infection, CD4+T cells are thought to be necessary for the induction of Env-specific broadly neutralizing antibodies. However, few studies have investigated the role of HIV-specific CD4+T cells in association with HIV neutralizing antibody activity in vaccination or natural infection settings. Here, we conducted a comprehensive analysis of HIV-specific CD4+T cell responses in a cohort of 34 untreated HIV-infected controllers matched for viral load, with and without neutralizing antibody breadth to a panel of viral strains. Our results show that the breadth and magnitude of Gag-specific CD4+T cell responses were significantly higher in individuals with neutralizing antibodies than in those without neutralizing antibodies. The breadth of Gag-specific CD4+T cell responses was positively correlated with the breadth of neutralizing antibody activity. Furthermore, the breadth and magnitude of gp41-specific, but not gp120-specific, CD4+T cell responses were significantly elevated in individuals with neutralizing antibodies. Together, these data suggest that robust Gag-specific CD4+T cells and, to a lesser extent, gp41-specific CD4+T cells may provide important intermolecular help to Env-specific B cells that promote the generation or maintenance of Env-specific neutralizing antibodies.IMPORTANCEOne of the earliest discoveries related to CD4+T cell function was their provision of help to B cells in the development of antibody responses. Yet little is known about the role of CD4+T helper responses in the setting of HIV infection, and no studies to date have evaluated the impact of HIV-specific CD4+T cells on the generation of antibodies that can neutralize multiple different strains of HIV. Here, we addressed this question by analyzing HIV-specific CD4+T cell responses in untreated HIV-infected persons with and without neutralizing antibodies. Our results indicate that HIV-infected persons with neutralizing antibodies have significantly more robust CD4+T cell responses targeting Gag and gp41 proteins than individuals who lack neutralizing antibodies. These associations suggest that Gag- and gp41-specific CD4+T cell responses may provide robust help to B cells for the generation or maintenance of neutralizing antibodies in natural HIV-infection.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-38
Author(s):  
Yongxia Wu ◽  
Chih-Hang Anthony Tang ◽  
Corey Mealer ◽  
David Bastian ◽  
Mohammed Hanief Sofi ◽  
...  

The endoplasmic-reticulum-resident protein STING (Stimulator of IFN genes) is a downstream signaling effector of cytosolic DNA sensor cGAS (cyclic GMP-AMP synthase). STING-mediated innate immune activation plays a key role in tumor- and self-DNA elicited anti-tumor immunity and autoimmunity, respectively, yet the mechanism remains largely unclear. We utilized murine models of allogeneic hematopoietic cell transplantation (allo-HCT) to study the biology of STING in antigen-presetting cells (APCs) and T cells. STING expression in donor T cells was dispensable for their ability to induce graft-versus-host disease (GVHD), a major complication of allo-HCT in the clinic. However, when STING-deficient mice were used as recipients, more severe disease was induced after allo-HCT. Using bone marrow (BM) chimeras where STING was absent in different compartments, we found that STING-deficiency on host hematopoietic cells (Fig. A), but not on non-hematopoietic cells, was primarily responsible for exacerbating the disease. Furthermore, STING expression on host CD11c+ cells played a dominant role in the regulation of allogeneic T-cell responses (Fig. B). Mechanistically, STING deficiency resulted in increased survival, activation and function of irradiated APCs, including macrophages and dendritic cells (DCs, fig. C-D). To further determine the role of STING in APCs, we generated a STING V154M knock-in mouse model, in which V154M mutation in TMEM173 causes constitutive activation of STING. Consistently, constitutive activation of STING attenuated the survival, activation and function of APCs isolated from STING V154M knock-in mice. In addition, STING-deficient APCs augmented donor T-cell expansion, chemokine receptor expression and migration into intestinal tissues (Fig. E), resulting in accelerated/exacerbated disease. Using pharmacologic approaches, we demonstrate that systemic administration of a STING agonist (c-di-GMP) to recipient mice before transplantation significantly reduced GVHD mortality (Fig. F). In conclusion, we report an inhibitory role of STING in regulating survival and T-cell priming function of hematopoietic APCs, especially CD11c+ cells, after allo-HCT. We validate that pharmacological activation of STING may serve as a potential therapeutic strategy to constrain APCs and induce immune tolerance. Figure Disclosures No relevant conflicts of interest to declare.


Author(s):  
Anne Scheuerpflug ◽  
Fatima Ahmetlić ◽  
Vera Bauer ◽  
Tanja Riedel ◽  
Martin Röcken ◽  
...  

Abstract Immune checkpoint blocking (ICB) is a promising new tool of cancer treatment. Yet, the underlying therapeutic mechanisms are not fully understood. Here we investigated the role of dendritic cells (DCs) for the therapeutic effect of ICB in a λ-MYC-transgenic mouse model of endogenously arising B-cell lymphoma. The growth of these tumors can be effectively delayed by antibodies against CTLA-4 and PD-1. Tumor-infiltrating DCs from mice having received therapy showed an upregulation of costimulatory molecules as well as an augmented IL-12/IL-10 ratio as compared to untreated controls. Both alterations seemed to be induced by interferon-γ (IFN-γ), which is upregulated in T cells and natural killer cells upon ICB. Furthermore, the enhanced IL-12/IL-10 ratio, which favors Th1-prone antitumor T-cell responses, was a consequence of direct interaction of ICB antibodies with DCs. Importantly, the capability of tumor-infiltrating DCs of stimulating peptide-specific or allogeneic T-cell responses in vitro was improved when DCs were derived from ICB-treated mice. The data indicate that ICB therapy is not only effective by directly activating T cells, but also by triggering a complex network, in which DCs play a pivotal role at the interface between innate and adaptive antitumor responses.


2018 ◽  
Vol 6 (2) ◽  
pp. 31-47 ◽  
Author(s):  
Victoria A Brentville ◽  
Suha Atabani ◽  
Katherine Cook ◽  
Lindy G Durrant

The interplay between tumours and the immune system has long been known to involve complex interactions between tumour cells, immune cells and the tumour microenvironment. The progress of checkpoint inhibitors in the clinic in the last decade has highlighted again the role of the immune system in the fight against cancer. Numerous efforts have been undertaken to develop ways of stimulating the cellular immune response to eradicate tumours. These interventions include the identification of appropriate tumour antigens as targets for therapy. In this review, we summarize progress in selection of target tumour antigen. Targeting self antigens has the problem of thymic deletion of high-affinity T-cell responses leaving a diminished repertoire of low-affinity T cells that fail to kill tumour cells. Thymic regulation appears to be less stringent for differentiation of cancer–testis antigens, as many tumour rejection antigens fall into this category. More recently, targeting neo-epitopes or post-translational modifications such as a phosphorylation or stress-induced citrullination has shown great promise in preclinical studies. Of particular interest is that the responses can be mediated by both CD4 and CD8 T cells. Previous vaccines have targeted CD8 T-cell responses but more recently, the central role of CD4 T cells in orchestrating inflammation within tumours and also differentiating into potent killer cells has been recognized. The design of vaccines to induce such immune responses is discussed herein. Liposomally encoded ribonucleic acid (RNA), targeted deoxyribonucleic acid (DNA) or long peptides linked to toll-like receptor (TLR) adjuvants are the most promising new vaccine approaches. These exciting new approaches suggest that the ‘Holy Grail’ of a simple nontoxic cancer vaccine may be on the horizon. A major hurdle in tumour therapy is also to overcome the suppressive tumour environment. We address current progress in combination therapies and suggest that these are likely to show the most promise for the future.


2006 ◽  
Vol 80 (17) ◽  
pp. 8627-8638 ◽  
Author(s):  
Jason M. Grayson ◽  
Ashley E. Weant ◽  
Beth C. Holbrook ◽  
David Hildeman

ABSTRACT Apoptosis is critical for the development and maintenance of the immune system. The proapoptotic Bcl-2 family member Bim is important for normal immune system homeostasis. Although previous experiments have shown that Bim is critical for the apoptosis of antigen-specific CD8+ T cells during acute viral infection, the role of Bim during chronic viral infection is unclear. Using lymphocytic choriomeningitis virus clone 13 infection of mice, we demonstrate a role for Bim in CD8+ T-cell apoptosis during chronic viral infection. Enumeration of antigen-specific CD8+ T cells by major histocompatibility complex class I tetramer staining revealed that CD8+ DbNP396-404+ T cells, which undergo extensive deletion in wild-type mice, exhibited almost no decrease in Bim mutant mice. This contrasts with CD8+ DbGP33-41+ and CD8+ DbGP276-286+ T cells that underwent similar decreases in numbers in both Bim mutant and wild-type mice. Increased numbers of CD8+ DbNP396-404+ T cells in Bim mutant mice were due to lack of apoptosis and could not be explained by altered proliferation, differential homing to tissues, or increased help from CD4+ T cells. When viral titers were examined, high levels were initially observed in both groups, but in Bim mutant mice, clearance from the spleen and sera was slightly accelerated. These experiments demonstrate the critical role of Bim during chronic viral infection to down-regulate CD8+ T-cell responses and have implications for designing strategies for optimizing immunotherapies during situations where antigen persists, such as chronic infection, autoimmune syndromes, and cancer.


2003 ◽  
Vol 198 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Tahiro Shin ◽  
Gene Kennedy ◽  
Kevin Gorski ◽  
Haruo Tsuchiya ◽  
Haruhiko Koseki ◽  
...  

B7-DC is a recently discovered member of the B7 family that binds to PD-1 and is selectively expressed by dendritic cells (DCs). It has been shown to either costimulate or inhibit T cell responses. To assess the role of B7-DC in DC–T cell interactions, DCs from B7-DC knockout (KO) mice were generated and compared with DCs from wild-type (WT) and B7–1/B7–2 double KO mice. B7–1/B7–2–deficient DCs, while strongly diminished in their ability to stimulate naive CD4+ T cells, nonetheless retain partial activity. DCs from B7-DC KO mice are diminished in their ability to activate CD4+ T cells, demonstrating that DC-expressed B7-DC serves a predominantly stimulatory rather than inhibitory function in the initiation of T cell responses. B7-DC costimulates expression of CD40L with faster kinetics than B7–1 and displays potent synergy with B7–1 and B7–2 for T cell proliferation and cytokine production, indicating that these B7 family members work in concert to stimulate T cells. Finally, costimulation with B7-DC alone or in conjunction with B7–1 is PD-1 independent, indicating that B7-DC costimulates T cells via a second receptor.


Sign in / Sign up

Export Citation Format

Share Document