scholarly journals IL-17A-mediated expression of epithelial IL-17C promotes inflammation during acute Pseudomonas aeruginosa pneumonia

2016 ◽  
Vol 311 (5) ◽  
pp. L1015-L1022 ◽  
Author(s):  
Lisa Wolf ◽  
Sandra Sapich ◽  
Anja Honecker ◽  
Christopher Jungnickel ◽  
Frederik Seiler ◽  
...  

Lung epithelial cells are suggested to promote pathogen-induced pulmonary inflammation by the release of chemokines, resulting in enhanced recruitment of circulating leukocytes. Recent studies have shown that the interleukin-17C (IL-17C) regulates innate immune functions of epithelial cells in an autocrine manner. The aim of this study was to investigate the contribution of IL-17C to pulmonary inflammation in a mouse model of acute Pseudomonas aeruginosa pneumonia. Infection with P. aeruginosa resulted in an increased expression of IL-17C in lung tissue of wild-type mice. Numbers of neutrophils and the expression of the neutrophil-recruiting chemokines keratinocyte-derived chemokine and macrophage inflammatory protein 2 were significantly decreased in lungs of IL-17C-deficient (IL-17C−/−) mice infected with P. aeruginosa at 24 h. Systemic concentrations of interleukin-6 (IL-6) were significantly decreased in infected IL-17C−/− mice at 24 h and the survival of IL-17C−/− mice was significantly increased at 48 h. The expression of IL-17C was reduced in infected mice deficient for interleukin-17A (IL-17A), whereas pulmonary concentrations of IL-17A were not affected by the deficiency for IL-17C. Stimulation of primary alveolar epithelial cells with IL-17A resulted in a significantly increased expression of IL-17C in vitro. Our data suggest that IL-17A-mediated expression of epithelial IL-17C amplifies the release of chemokines by epithelial cells and thereby contributes to the recruitment of neutrophils and systemic inflammation during acute P. aeruginosa pneumonia.

2004 ◽  
Vol 287 (1) ◽  
pp. L104-L110 ◽  
Author(s):  
Xiaohui Fang ◽  
Yuanlin Song ◽  
Rachel Zemans ◽  
Jan Hirsch ◽  
Michael A. Matthay

Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-μm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 ± 115 Ω·cm2) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 μl of culture medium containing 0.5 μCi of 131I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 ± 0.34% over 24 h. The change in concentration of 131I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 μl·cm−2·h−1. cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.


Author(s):  
Fen Liu ◽  
Wei Peng ◽  
Jiaquan Chen ◽  
Zeyao Xu ◽  
Rong Jiang ◽  
...  

Acute lung injury (ALI) induced by sepsis is characterized by disruption of the epithelial barrier and activation of alveolar macrophages (AMs), which leads to uncontrolled pulmonary inflammation. However, effective treatments for ALI are unavailable. The exact mechanism by which the initial mediator of alveolar epithelial cells (AECs) induces inflammation remains elusive. Here we investigated the roles of AEC-derived exosomes in AM activation and sepsis-induced ALI in vivo and in vitro. Cecal ligation and puncture (CLP) was utilized to establish septic lung injury model in rats. The effect of exosomal inhibition by intratracheal GW4869 administration on lung injury was investigated. To assess the effects of AEC-derived exosomes on ALI, we treated the rat alveolar epithelial cell line RLE-6TN with LPS to induce cell damage. Exosomes from conditioned medium of LPS-treated AECs (LPS-Exos) were isolated by ultracentrifugation. The miRNAs in LPS-Exos were screened by miRNA expression profile analysis. The effects of miR-92a-3p on the function of AMs were studied. We found that intratracheal GW4869 administration ameliorated lung injury following CLP-induced ALI. LPS-Exos were taken up by AMs and activated these cells. Consistently, administration of LPS-Exos in rats significantly aggravated pulmonary inflammation and alveolar permeability. Moreover, miR-92a-3p was enriched in LPS-Exos and could be delivered to AMs. Inhibition of miR-92a-3p in AECs diminished the proinflammatory effects of LPS-Exos in vivo and in vitro. Mechanistically, miR-92a-3p activates AMs along with pulmonary inflammation. This process results in activation of the NF-κB pathway and downregulation of PTEN expression, which was confirmed by a luciferase reporter assay. In conclusion, AEC-derived exosomes activate AMs and induce pulmonary inflammation mediated by miR-92a-3p in ALI. The present findings revealed a previously unidentified role of exosomal miR-92a-3p in mediating the crosstalk between injured AEC and AMs. miR-92a-3p in AEC exosomes might represent a novel diagnostic biomarker for ALI, which may lead to a new therapeutic approach.


2020 ◽  
Author(s):  
Seegehalli M Anil ◽  
Nurit Shalev ◽  
Ajjampura C Vinayaka ◽  
Stalin Nadarajan ◽  
Dvory Namdar ◽  
...  

Abstract Cannabis sativa is widely used for medical purposes and has anti-inflammatory activity. The purpose of this study was to examine the anti-inflammatory activity of cannabis on markers of immune responses associated with Coronavirus disease 2019 (COVID-19) inflammation. An extract fraction from C. sativa Arbel strain (FCBD) substantially reduced dose dependently interleukin (IL) 6 and 8 levels in an alveolar epithelial (A549) cell line. FCBD contained cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), and multiple terpenes. Treatments with FCBD and phytocannabinoid standards that compose FCBD (FCBD:std) reduced IL-6, IL-8, C-C Motif Chemokine Ligands (CCLs) 2 and 7, and angiotensin I converting enzyme 2 (ACE2) expression in the A549 cell line. Treatment with FCBD induced macrophages (differentiated KG1 cell line) polarization and phagocytosis in vitro, and increased CD36 and type II receptor for the Fc region of IgG (FcγRII) expression. FCBD treatment also substantially increased IL-6 and IL-8 expression in macrophages. FCBD:std, while maintaining the anti-inflammatory activity in alveolar epithelial cells, led to reduced phagocytosis and pro-inflammatory IL secretion in macrophages in comparison to FCBD. The phytocannabinoid mixture may show superior activity versus cannabis fraction for reduction of lung inflammation, yet there is a need of caution in proposing cannabis as treatment for COVID-19.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seegehalli M. Anil ◽  
Nurit Shalev ◽  
Ajjampura C. Vinayaka ◽  
Stalin Nadarajan ◽  
Dvora Namdar ◽  
...  

AbstractCannabis sativa is widely used for medical purposes and has anti-inflammatory activity. This study intended to examine the anti-inflammatory activity of cannabis on immune response markers associated with coronavirus disease 2019 (COVID-19) inflammation. An extract fraction from C. sativa Arbel strain (FCBD) substantially reduced (dose dependently) interleukin (IL)-6 and -8 levels in an alveolar epithelial (A549) cell line. FCBD contained cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), and multiple terpenes. Treatments with FCBD and a FCBD formulation using phytocannabinoid standards (FCBD:std) reduced IL-6, IL-8, C–C Motif Chemokine Ligands (CCLs) 2 and 7, and angiotensin I converting enzyme 2 (ACE2) expression in the A549 cell line. Treatment with FCBD induced macrophage (differentiated KG1 cell line) polarization and phagocytosis in vitro, and increased CD36 and type II receptor for the Fc region of IgG (FcγRII) expression. FCBD treatment also substantially increased IL-6 and IL-8 expression in macrophages. FCBD:std, while maintaining anti-inflammatory activity in alveolar epithelial cells, led to reduced phagocytosis and pro-inflammatory IL secretion in macrophages in comparison to FCBD. The phytocannabinoid formulation may show superior activity versus the cannabis-derived fraction for reduction of lung inflammation, yet there is a need of caution proposing cannabis as treatment for COVID-19.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098604
Author(s):  
Dong Yuan ◽  
Yuanshun Liu ◽  
Mengyu Li ◽  
Hongbin Zhou ◽  
Liming Cao ◽  
...  

Objective The primary aim of our study was to explore the mechanisms through which long non-coding RNA (lncRNA)-mediated sirtuin-1 (SIRT1) signaling regulates type II alveolar epithelial cell (AECII) senescence induced by a cigarette smoke-media suspension (CSM). Methods Pharmacological SIRT1 activation was induced using SRT2104 and senescence-associated lncRNA 1 (SAL-RNA1) was overexpressed. The expression of SIRT1, FOXO3a, p53, p21, MMP-9, and TIMP-1 in different groups was detected by qRT-PCR and Western blotting; the activity of SA-β gal was detected by staining; the binding of SIRT1 to FOXO3a and p53 gene transcription promoters was detected by Chip. Results We found that CSM increased AECII senescence, while SAL-RNA1 overexpression and SIRT1 activation significantly decreased levels of AECII senescence induced by CSM. Using chromatin immunoprecipitation, we found that SIRT1 bound differentially to transcriptional complexes on the FOXO3a and p53 promoters. Conclusion Our results suggested that lncRNA-SAL1-mediated SIRT1 signaling reduces senescence of AECIIs induced by CSM. These findings suggest a new therapeutic target to limit the irreversible apoptosis of lung epithelial cells in COPD patients.


2012 ◽  
Vol 303 (2) ◽  
pp. L141-L151 ◽  
Author(s):  
Ayako Shigeta ◽  
Yuji Tada ◽  
Ji-Yang Wang ◽  
Shunsuke Ishizaki ◽  
Junichi Tsuyusaki ◽  
...  

Excessive apoptosis and prolonged inflammation of alveolar cells are associated with the pathogenesis of pulmonary emphysema. We aimed to determine whether CD40 affects alveolar epithelial cells and endothelial cells, with regard to evoking apoptosis and inflammation. Mice were repeatedly treated with agonistic-anti CD40 antibody (Ab), with or without agonistic-anti Fas Ab, and evaluated for apoptosis and inflammation in lungs. Human pulmonary microvascular endothelial cells and alveolar epithelial cells were treated with agonistic anti-CD40 Ab and/or anti-Fas Ab to see their direct effect on apoptosis and secretion of proinflammatory molecules in vitro. Furthermore, plasma soluble CD40 ligand (sCD40L) level was evaluated in patients with chronic obstructive pulmonary disease (COPD). In mice, inhaling agonistic anti-CD40 Ab induced moderate alveolar enlargement. CD40 stimulation, in combination with anti-Fas Ab, induced significant emphysematous changes and increased alveolar cell apoptosis. CD40 stimulation also enhanced IFN-γ-mediated emphysematous changes, not via apoptosis induction, but via inflammation with lymphocyte accumulation. In vitro, Fas-mediated apoptosis was enhanced by CD40 stimulation and IFN-γ in endothelial cells and by CD40 stimulation in epithelial cells. CD40 stimulation induced secretion of CCR5 ligands in endothelial cells, enhanced with IFN-γ. Plasma sCD40L levels were significantly increased in patients with COPD, inversely correlating to the percentage of forced expiratory volume in 1 s and positively correlating to low attenuation area score by CT scan, regardless of smoking history. Collectively CD40 plays a contributing role in the development of pulmonary emphysema by sensitizing Fas-mediated apoptosis in alveolar cells and increasing the secretion of proinflammatory chemokines.


2014 ◽  
Vol 307 (6) ◽  
pp. L449-L459 ◽  
Author(s):  
Seong Chul Kim ◽  
Thomas Kellett ◽  
Shaohua Wang ◽  
Miyuki Nishi ◽  
Nagaraja Nagre ◽  
...  

The molecular mechanisms for lung cell repair are largely unknown. Previous studies identified tripartite motif protein 72 (TRIM72) from striated muscle and linked its function to tissue repair. In this study, we characterized TRIM72 expression in lung tissues and investigated the role of TRIM72 in repair of alveolar epithelial cells. In vivo injury of lung cells was introduced by high tidal volume ventilation, and repair-defective cells were labeled with postinjury administration of propidium iodide. Primary alveolar epithelial cells were isolated and membrane wounding and repair were labeled separately. Our results show that absence of TRIM72 increases susceptibility to deformation-induced lung injury whereas TRIM72 overexpression is protective. In vitro cell wounding assay revealed that TRIM72 protects alveolar epithelial cells through promoting repair rather than increasing resistance to injury. The repair function of TRIM72 in lung cells is further linked to caveolin 1. These data suggest an essential role for TRIM72 in repair of alveolar epithelial cells under plasma membrane stress failure.


2004 ◽  
Vol 72 (3) ◽  
pp. 1767-1774 ◽  
Author(s):  
Beatriz de Astorza ◽  
Guadalupe Cortés ◽  
Catalina Crespí ◽  
Carles Saus ◽  
José María Rojo ◽  
...  

ABSTRACT The airway epithelium represents a primary site for contact between microbes and their hosts. To assess the role of complement in this event, we studied the interaction between the A549 cell line derived from human alveolar epithelial cells and a major nosocomial pathogen, Klebsiella pneumoniae, in the presence of serum. In vitro, we found that C3 opsonization of poorly encapsulated K. pneumoniae clinical isolates and an unencapsulated mutant enhanced dramatically bacterial internalization by A549 epithelial cells compared to highly encapsulated clinical isolates. Local complement components (either present in the human bronchoalveolar lavage or produced by A549 epithelial cells) were sufficient to opsonize K. pneumoniae. CD46 could competitively inhibit the internalization of K. pneumoniae by the epithelial cells, suggesting that CD46 is a receptor for the binding of complement-opsonized K. pneumoniae to these cells. We observed that poorly encapsulated strains appeared into the alveolar epithelial cells in vivo but that (by contrast) they were completely avirulent in a mouse model of pneumonia compared to the highly encapsulated strains. Our results show that bacterial opsonization by complement enhances the internalization of the avirulent microorganisms by nonphagocytic cells such as A549 epithelial cells and allows an efficient innate defense.


1995 ◽  
Vol 269 (1) ◽  
pp. L127-L135 ◽  
Author(s):  
W. W. Barton ◽  
S. Wilcoxen ◽  
P. J. Christensen ◽  
R. Paine

Intercellular adhesion molecule-1 (ICAM-1) is expressed at high levels on type I alveolar epithelial cells in the normal lung and is induced in vitro as type II cells spread in primary culture. In contrast, in most nonhematopoetic cells ICAM-1 expression is induced in response to inflammatory cytokines. We have formed the hypothesis that the signals that control ICAM-1 expression in alveolar epithelial cells are fundamentally different from those controlling expression in most other cells. To test this hypothesis, we have investigated the influence of inflammatory cytokines on ICAM-1 expression in isolated type II cells that have spread in culture and compared this response to that of rat pulmonary artery endothelial cells (RPAEC). ICAM-1 protein, determined both by a cell-based enzyme-linked immunosorbent assay and by Western blot analysis, and mRNA were minimally expressed in unstimulated RPAEC but were significantly induced in a time- and dose-dependent manner by treatment with tumor necrosis factor-alpha, interleukin-1 beta, or interferon-gamma. In contrast, these cytokines did not influence the constitutive high level ICAM-1 protein expression in alveolar epithelial cells and only minimally affected steady-state mRNA levels. ICAM-1 mRNA half-life, measured in the presence of actinomycin D, was relatively long at 7 h in alveolar epithelial cells and 4 h in RPAEC. The striking lack of response of ICAM-1 expression by alveolar epithelial cells to inflammatory cytokines is in contrast to virtually all other epithelial cells studied to date and supports the hypothesis that ICAM-1 expression by these cells is a function of cellular differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document