scholarly journals Loss of myeloid-specific protein phosphatase 2A enhances lung injury and fibrosis and results in IL-10-dependent sensitization of epithelial cell apoptosis

2019 ◽  
Vol 316 (6) ◽  
pp. L1035-L1048 ◽  
Author(s):  
Lei Sun ◽  
Elissa M. Hult ◽  
Timothy T. Cornell ◽  
Kevin K. Kim ◽  
Thomas P. Shanley ◽  
...  

Protein phosphatase 2A (PP2A), a ubiquitously expressed Ser/Thr phosphatase is an important regulator of cytokine signaling and cell function. We previously showed that myeloid-specific deletion of PP2A (LysMcrePP2A−/−) increased mortality in a murine peritoneal sepsis model. In the current study, we assessed the role of myeloid PP2A in regulation of lung injury induced by lipopolysaccharide (LPS) or bleomycin delivered intratracheally. LysMcrePP2A−/− mice experienced increased lung injury in response to both LPS and bleomycin. LysMcrePP2A−/− mice developed more exuberant fibrosis in response to bleomycin, elevated cytokine responses, and chronic myeloid inflammation. Bone marrow-derived macrophages (BMDMs) from LysMcrePP2A−/− mice showed exaggerated inflammatory cytokine release under conditions of both M1 and M2 activation. Notably, secretion of IL-10 was elevated under all stimulation conditions, including activation of BMDMs by multiple Toll-like receptor ligands. Supernatants collected from LPS-stimulated LysMcrePP2A−/− BMDMs induced epithelial cell apoptosis in vitro but this effect was mitigated when IL-10 was also depleted from the BMDMs by crossing LysMcrePP2A−/− mice with systemic IL-10−/− mice (LysMcrePP2A−/− × IL-10−/−) or when IL-10 was neutralized. Despite these findings, IL-10 did not directly induce epithelial cell apoptosis but sensitized epithelial cells to other mediators from the BMDMs. Taken together our results demonstrate that myeloid PP2A regulates production of multiple cytokines but that its effect is most pronounced on IL-10 production. Furthermore, IL-10 sensitizes epithelial cells to apoptosis in response to myeloid-derived mediators, which likely contributes to the pathogenesis of lung injury and fibrosis in this model.

2006 ◽  
Vol 26 (7) ◽  
pp. 2832-2844 ◽  
Author(s):  
Hugh K. Arnold ◽  
Rosalie C. Sears

ABSTRACT Protein phosphatase 2A (PP2A) plays a prominent role in controlling accumulation of the proto-oncoprotein c-Myc. PP2A mediates its effects on c-Myc by dephosphorylating a conserved residue that normally stabilizes c-Myc, and in this way, PP2A enhances c-Myc ubiquitin-mediated degradation. Stringent regulation of c-Myc levels is essential for normal cell function, as c-Myc overexpression can lead to cell transformation. Conversely, PP2A has tumor suppressor activity. Uncovering relevant PP2A holoenzymes for a particular target has been limited by the fact that cellular PP2A represents a large heterogeneous population of trimeric holoenzymes, composed of a conserved catalytic subunit and a structural subunit along with a variable regulatory subunit which directs the holoenzyme to a specific target. We now report the identification of a specific PP2A regulatory subunit, B56α, that selectively associates with the N terminus of c-Myc. B56α directs intact PP2A holoenzymes to c-Myc, resulting in a dramatic reduction in c-Myc levels. Inhibition of PP2A-B56α holoenzymes, using small hairpin RNA to knock down B56α, results in c-Myc overexpression, elevated levels of c-Myc serine 62 phosphorylation, and increased c-Myc function. These results uncover a new protein involved in regulating c-Myc expression and reveal a critical interconnection between a potent oncoprotein, c-Myc, and a well-documented tumor suppressor, PP2A.


1998 ◽  
Vol 275 (5) ◽  
pp. L1013-L1017 ◽  
Author(s):  
Bruce D. Uhal ◽  
Claudia Gidea ◽  
Raed Bargout ◽  
Antonio Bifero ◽  
Olivia Ibarra-Sunga ◽  
...  

The angiotensin-converting enzyme inhibitor captopril has been shown to inhibit fibrogenesis in the lung, but the mechanisms underlying this action are unclear. Apoptosis of lung epithelial cells is believed to be involved in the pathogenesis of pulmonary fibrosis. For these reasons, we studied the effect of captopril on Fas-induced apoptosis in a human lung epithelial cell line. Monoclonal antibodies that activate the Fas receptor induced epithelial cell apoptosis as detected by chromatin condensation, nuclear fragmentation, DNA fragmentation, and increased activities of caspase-1 and -3. Apoptosis was not induced by isotype-matched nonimmune mouse immunoglobulins or nonactivating anti-Fas monoclonal antibodies. When applied simultaneously with anti-Fas antibodies, 50 ng/ml of captopril completely abrogated apoptotic indexes based on morphology, DNA fragmentation, and inducible caspase-1 activity and significantly decreased the inducible activity of caspase-3. Inhibition of apoptosis by captopril was concentration dependent, with an IC50 of 70 pg/ml. These data suggest that the inhibitory actions of captopril on pulmonary fibrosis may be related to prevention of lung epithelial cell apoptosis.


1997 ◽  
Vol 273 (5) ◽  
pp. L921-L929 ◽  
Author(s):  
Long-Ping Wen ◽  
Kamyar Madani ◽  
Jimothy A. Fahrni ◽  
Steven R. Duncan ◽  
Glenn D. Rosen

Lung epithelium plays a central role in modulation of the inflammatory response and in lung repair. Airway epithelial cells are targets in asthma, viral infection, acute lung injury, and fibrotic lung disease. Activated T lymphocytes release cytokines such as interferon-γ (IFN-γ) that can cooperate with apoptotic signaling pathways such as the Fas-APO-1 pathway to induce apoptosis of damaged epithelial cells. We report that IFN-γ alone and in combination with activation of the Fas pathway induced apoptosis in A549 lung epithelial cells. Interestingly, the corticosteroid dexamethasone was the most potent inhibitor of IFN-γ- and IFN-γ plus anti-Fas-induced apoptosis. IFN-γ induced expression of an effector of apoptosis, the cysteine protease interleukin-1β-converting enzyme, in A549 cells. Dexamethasone, in contrast, induced expression of an inhibitor of apoptosis, human inhibitor of apoptosis (hIAP-1), also known as cIAP2. We suggest that the inhibition of epithelial cell apoptosis by corticosteroids may be one mechanism by which they suppress the inflammatory response.


2007 ◽  
Vol 8 (2) ◽  
pp. 132-137 ◽  
Author(s):  
Reinout A. Bem ◽  
Albert P. Bos ◽  
Gustavo Matute-Bello ◽  
Minke van Tuyl ◽  
Job B. M. van Woensel

2017 ◽  
Vol 484 (2) ◽  
pp. 422-428 ◽  
Author(s):  
Saiko Ogata-Suetsugu ◽  
Toyoshi Yanagihara ◽  
Naoki Hamada ◽  
Chika Ikeda-Harada ◽  
Tetsuya Yokoyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document