scholarly journals Soluble guanylate cyclase modulates alveolarization in the newborn lung

2013 ◽  
Vol 305 (8) ◽  
pp. L569-L581 ◽  
Author(s):  
Patricia R. Bachiller ◽  
Katherine H. Cornog ◽  
Rina Kato ◽  
Emmanuel S. Buys ◽  
Jesse D. Roberts

Nitric oxide (NO) regulates lung development through incompletely understood mechanisms. NO controls pulmonary vascular smooth muscle cell (SMC) differentiation largely through stimulating soluble guanylate cyclase (sGC) to produce cGMP and increase cGMP-mediated signaling. To examine the role of sGC in regulating pulmonary development, we tested whether decreased sGC activity reduces alveolarization in the normal and injured newborn lung. For these studies, mouse pups with gene-targeted sGC-α1 subunit truncation were used because we determined that they have decreased pulmonary sGC enzyme activity. sGC-α1 knockout (KO) mouse pups were observed to have decreased numbers of small airway structures and lung volume compared with wild-type (WT) mice although lung septation and body weights were not different. However, following mild lung injury caused by breathing 70% O2, the sGC-α1 KO mouse pups had pronounced inhibition of alveolarization, as evidenced by an increase in airway mean linear intercept, reduction in terminal airway units, and decrease in lung septation and alveolar openings, as well as reduced somatic growth. Because cGMP regulates SMC phenotype, we also tested whether decreased sGC activity reduces lung myofibroblast differentiation. Cellular markers revealed that vascular SMC differentiation decreased, whereas myofibroblast activation increased in the hyperoxic sGC-α1 KO pup lung. These results indicate that lung development, particularly during hyperoxic injury, is impaired in mouse pups with diminished sGC activity. These studies support the investigation of sGC-targeting agents as therapies directed at improving development in the newborn lung exposed to injury.

Reproduction ◽  
2000 ◽  
pp. 327-330 ◽  
Author(s):  
RJ Lucas ◽  
JA Stirland ◽  
YN Mohammad ◽  
AS Loudon

The role of the circadian clock in the reproductive development of Syrian hamsters (Mesocricetus auratus was examined in wild type and circadian tau mutant hamsters reared from birth to 26 weeks of age under constant dim red light. Testis diameter and body weights were determined at weekly intervals in male hamsters from 4 weeks of age. In both genotypes, testicular development, subsequent regression and recrudescence exhibited a similar time course. The age at which animals displayed reproductive photosensitivity, as exhibited by testicular regression, was unrelated to circadian genotype (mean +/- SEM: 54 +/- 3 days for wild type and 59 +/- 5 days for tau mutants). In contrast, our studies revealed a significant impact of the mutation on somatic growth, such that tau mutants weighed 18% less than wild types at the end of the experiment. Our study reveals that the juvenile onset of reproductive photoperiodism in Syrian hamsters is not timed by the circadian system.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3418
Author(s):  
Grzegorz Grześk ◽  
Alicja Nowaczyk

For years, guanylate cyclase seemed to be homogenic and tissue nonspecific enzyme; however, in the last few years, in light of preclinical and clinical trials, it became an interesting target for pharmacological intervention. There are several possible options leading to an increase in cyclic guanosine monophosphate concentrations. The first one is related to the uses of analogues of natriuretic peptides. The second is related to increasing levels of natriuretic peptides by the inhibition of degradation. The third leads to an increase in cyclic guanosine monophosphate concentration by the inhibition of its degradation by the inhibition of phosphodiesterase type 5. The last option involves increasing the concentration of cyclic guanosine monophosphate by the additional direct activation of soluble guanylate cyclase. Treatment based on the modulation of guanylate cyclase function is one of the most promising technologies in pharmacology. Pharmacological intervention is stable, effective and safe. Especially interesting is the role of stimulators and activators of soluble guanylate cyclase, which are able to increase the enzymatic activity to generate cyclic guanosine monophosphate independently of nitric oxide. Moreover, most of these agents are effective in chronic treatment in heart failure patients and pulmonary hypertension, and have potential to be a first line option.


2000 ◽  
Vol 346 (3) ◽  
pp. 811 ◽  
Author(s):  
Detlef RITTER ◽  
James F. TAYLOR ◽  
Joseph W. HOFFMANN ◽  
Lynn CARNAGHI ◽  
Stephen J. GIDDINGS ◽  
...  

2020 ◽  
Author(s):  
Benjamin Ng ◽  
Anissa A. Widjaja ◽  
Sivakumar Viswanathan ◽  
Jinrui Dong ◽  
Sonia P. Chothani ◽  
...  

AbstractGenetic loss of function (LOF) in IL11RA infers IL11 signaling as important for fertility, fibrosis, inflammation and craniosynostosis. The impact of genetic LOF in IL11 has not been characterized. We generated IL11-knockout (Il11-/-) mice, which are born in normal Mendelian ratios, have normal hematological profiles and are protected from bleomycin-induced lung fibro-inflammation. Noticeably, baseline IL6 levels in the lungs of Il11-/- mice are lower than those of wild-type mice and are not induced by bleomycin damage, placing IL11 upstream of IL6. Lung fibroblasts from Il11-/- mice are resistant to pro-fibrotic stimulation and show evidence of reduced autocrine IL11 activity. Il11-/- female mice are infertile. Unlike Il11ra1-/- mice, Il11-/- mice do not have a craniosynostosis-like phenotype and exhibit mildly reduced body weights. These data highlight similarities and differences between LOF in IL11 or IL11RA while establishing further the role of IL11 signaling in fibrosis and stromal inflammation.


Nitric Oxide ◽  
2006 ◽  
Vol 15 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Daniela Dal Secco ◽  
Ana P. Moreira ◽  
Andressa Freitas ◽  
João S. Silva ◽  
Marcos A. Rossi ◽  
...  

2005 ◽  
Vol 5 (Suppl 1) ◽  
pp. P56
Author(s):  
Gwen Vanneste ◽  
Ingeborg Dhaese ◽  
Patrice Sips ◽  
Emmanuel Buys ◽  
Peter Brouckaert ◽  
...  

Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1743-1750 ◽  
Author(s):  
Hiroyuki Ariyasu ◽  
Hiroshi Iwakura ◽  
Go Yamada ◽  
Naotetsu Kanamoto ◽  
Mika Bando ◽  
...  

Ghrelin was initially identified as an endogenous ligand for the GH secretagogue receptor. When administrated exogenously, ghrelin stimulates GH release and food intake. Previous reports in ghrelin-null mice, which do not exhibit impaired growth nor appetite, question the physiologic role of ghrelin in the regulation of the GH/IGF-I axis. In this study, we generated a transgenic mouse that expresses human diphtheria toxin (DT) receptor (DTR) cDNA in ghrelin-secretion cells [ghrelin-promoter DTR-transgenic (GPDTR-Tg) mice]. Administration of DT to this mouse ablates ghrelin-secretion cells in a controlled manner. After injection of DT into GPDTR-Tg mice, ghrelin-secreting cells were ablated, and plasma levels of ghrelin were markedly decreased [nontransgenic littermates, 70.6 ± 10.2 fmol/ml vs. GPDTR-Tg, 5.3 ± 2.3 fmol/ml]. To elucidate the physiological roles of circulating ghrelin on GH secretion and somatic growth, 3-wk-old GPDTR-Tg mice were treated with DT twice a week for 5 wk. The GH responses to GHRH in male GPDTR-Tg mice were significantly lower than those in wild-type mice at 5 wk of age. However, those were normalized at 8 wk of age. In contrast, in female mice, there was no difference in GH response to GHRH between GPDTR-Tg mice and controls at 5 or 8 wk of age. The gender-dependent differences in response to GHRH were observed in ghrelin-ablated mice. However, GPDTR-Tg mice did not display any decreases in IGF-I levels or any growth retardation. Our results strongly suggest that circulating ghrelin does not play a crucial role in somatic growth.


Sign in / Sign up

Export Citation Format

Share Document