Blocking ATP releasing channels prevents high extracellular ATP levels and airway hyperreactivity in an asthmatic mouse model

Author(s):  
Llilian Arzola Martínez ◽  
Rebeca Benavente ◽  
Génesis Vega ◽  
Mariana Ríos ◽  
Wendy Fonseca ◽  
...  

Allergic asthma is a chronic airway inflammatory response to different triggers like inhaled allergens. Excessive ATP in fluids from asthmatic patients is considered an inflammatory signal and an important autocrine/paracrine modulator of airway physiology. Here we investigated the deleterious effect of increased extracellular ATP (eATP) concentration on the mucociliary clearance (MCC) effectiveness and determined the role of ATP releasing channels during airway inflammation in an ovalbumin (OVA)-sensitized mouse model. Our allergic mouse model exhibited high levels of eATP measured in the tracheal fluid with a luciferin-luciferase assay and reduced MCC velocity determined by microspheres tracking in the trachea ex vivo. Addition of ATP had a dual effect on MCC, where lower ATP concentration (µM) increased microspheres velocity, while higher concentration (mM) transiently stopped microspheres movement. Also, an augmented ethidium bromide uptake by the allergic tracheal airway epithelium suggests an increase in ATP release channel functionality during inflammatory conditions. The use of carbenoxolone, a non-specific inhibitor of connexin and pannexin1channels reduced the eATP concentration in the allergic mouse tracheal fluid and dye uptake by the airway epithelium, providing evidence that these ATP release channels are facilitating the net flux of ATP to the lumen during airway inflammation. However, only the specific inhibition of pannexin1 with 10Panx peptide significantly reduced eATP in bronchoalveolar lavage and decreased airway hyperresponsiveness in OVA-allergic mouse model. These data provide evidence that blocking eATP may be a pharmacological alternative to be explored in rescue therapy during episodes of airflow restriction in asthmatic patients.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xin Ping Li ◽  
Lu Lu Zhou ◽  
Yan Hua Guo ◽  
Jian Wen Wang

Abstract Background Adenosine 5′-triphosphate (ATP) plays both a central role as an intracellular energy source, and a crucial extracellular signaling role in diverse physiological processes of animals and plants. However, there are less reports concerning the signaling role of microbial extracellular ATP (eATP). Hypocrellins are effective anticancer photodynamic therapy (PDT) agents from bambusicolous Shiraia fungi. The co-culture of Shiraia sp. S9 and a bacterium Pseudomonas fulva SB1 isolated from Shiraia fruiting bodies was established for enhanced hypocrellin A (HA) production. The signaling roles of eATP to mediate hypocrellin biosynthesis were investigated in the co-culture. Results The co-culture induced release of eATP at 378 nM to the medium around 4 h. The eATP release was interdependent on cytosolic Ca2+ concentration and reactive oxygen species (ROS) production, respectively. The eATP production could be suppressed by the Ca2+ chelator EGTA or abolished by the channel blocker La3+, ROS scavenger vitamin C and NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI). The bacterium-induced H2O2 production was strongly inhibited by reactive blue (RB), a specific inhibitor of membrane purinoceptors, but dependent on the induced Ca2+ influx in the co-culture. On the other hand, the application of exogenous ATP (exATP) at 10–300 µM to Shiraia cultures also promoted fungal conidiation and HA production, both of which were blocked effectively by the purinoceptor inhibitors pyridoxalphosphate-6-azophenyl-2′, 4′-disulfonic acid (PPADS) and RB, and ATP hydrolase apyrase. Both the induced expression of HA biosynthetic genes and HA accumulation were inhibited significantly under the blocking of the eATP or Ca2+ signaling, and the scavenge of ROS in the co-culture. Conclusions Our results indicate that eATP release is an early event during the intimate bacterial–fungal interaction and eATP plays a signaling role in the bacterial elicitation on fungal metabolites. Ca2+ and ROS are closely linked for activation of the induced ATP release and its signal transduction. This is the first report on eATP production in the fungal–bacterial co-culture and its involvement in the induced biosynthesis of fungal metabolites. Graphic abstract


2008 ◽  
Vol 149 (1) ◽  
pp. 38-46 ◽  
Author(s):  
Arjun Ram ◽  
Shashi Kant Singh ◽  
Vijay Pal Singh ◽  
Sarvesh Kumar ◽  
Balaram Ghosh

2001 ◽  
Vol 81 (10) ◽  
pp. 1385-1396 ◽  
Author(s):  
Yasuo To ◽  
Makoto Dohi ◽  
Ryoichi Tanaka ◽  
Atsushi Sato ◽  
Kazuyuki Nakagome ◽  
...  

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Riyakumar Bhavsar ◽  
Sahith Rajalingam ◽  
Mehaben Patel ◽  
Praveena Prasad ◽  
Dovenia S Ponnoth

2010 ◽  
Vol 78 (8) ◽  
pp. 3609-3615 ◽  
Author(s):  
Susanne Säve ◽  
Katarina Persson

ABSTRACT Extracellular ATP can be released by many cell types under conditions of cellular stress and signals through activation of purinergic receptors. Bladder uroepithelial cells grown in vitro have previously been shown to release ATP in response to stretch. In the present study, we investigated ATP release from uroepithelial cells infected with bacteria and the effect of ATP on the host cell proinflammatory interleukin 8 (IL-8) response. The human kidney epithelial cell line A498 and the human uroepithelial cell line UROtsa were grown in culture and stimulated by the uropathogenic Escherichia coli (UPEC) IA2 strain or the stable ATP analogue ATP-γ-S. ATP and IL-8 levels were measured in cell culture medium with a luciferin-luciferase assay and enzyme-linked immunosorbent assay (ELISA), respectively. The results showed that UPEC infection of uroepithelial cells for 1 h significantly increased (P < 0.01) the extracellular ATP levels. ATP-γ-S (10 and 100 μM) stimulated release of IL-8 from UROtsa and A498 cells after 6 and 24 h. Experiments with different purinoceptor agonists suggested that P2Y receptors, and not P2X receptors, were responsible for the ATP-γ-S-induced IL-8 release. The potency profile further suggested involvement of P2Y1, P2Y2, and/or P2Y11 receptors, and reverse transcription-PCR (RT-PCR) studies confirmed that the cells expressed these receptors. The amount of IL-8 released increased 12-fold in UPEC-infected cells, and apyrase, an enzyme that degrades ATP, reduced this increase by approximately 50%. The present study suggests that enhanced ATP release and P2Y receptor activation during urinary tract infection may represent a novel, non-TLR4-mediated mechanism for production of proinflammatory IL-8 in human urinary tract epithelial cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Takayuki Nagai ◽  
Marino Nakao ◽  
Yuliko Shimizu ◽  
Yoshio Kodera ◽  
Masamichi Oh-Ishi ◽  
...  

Effects of a Kampo (Japanese herbal) medicine “shoseiryuto (SST, xiao-qing-long-tang in Chinese)”, which has been used for the treatment of allergic bronchial asthma clinically, were examined on ovalbumin (OVA)-sensitized allergic airway inflammation model (i.e., bronchial asthma) in a mouse. When SST was orally administered at 0.5 g kg−1 day−1from day 1 to 6 after OVA inhalation, SST reduced the inflammation in lung tissue, the number of eosinophils and the OVA-specific immunoglobulin E (IgE) antibody titer in bronchoalveolar lavage (BAL) fluids at 7 days after the OVA inhalation. SST also reduced the airway hyperreactivity at 6 days after the OVA inhalation. Proteomic analysis with the agarose two-dimensional electrophoresis showed that the expression of spectrin α2 was reduced in the lung tissue of OVA-sensitized mice and SST recovered the expression. Western blot and immunohistochemical analyses of lung tissue also confirmed this result. When prednisolone was orally administered at 3 mg kg−1 day−1from day 1 to 6 after OVA inhalation, the inflammation in lung tissue, the number of eosinophils in BAL fluids and airway hyperreactivity were reduced in the OVA-sensitized mice. However, prednisolone did not reduce the OVA-specific IgE antibody titer in BAL fluids and did not recover the expression of spectrin α2 in lung tissue. These results suggest that at least a part of action mechanism of SST against OVA-sensitized allergic airway inflammation in a mouse model is different from that of prednisolone.


2002 ◽  
Vol 168 (10) ◽  
pp. 5278-5286 ◽  
Author(s):  
Benjamin D. Medoff ◽  
Alain Sauty ◽  
Andrew M. Tager ◽  
James A. Maclean ◽  
R. Neal Smith ◽  
...  

2021 ◽  
Author(s):  
Tianli Cheng ◽  
jianfu heng ◽  
Quanhui Mei ◽  
Lijun Chen ◽  
Feng Zeng

Abstract BackgroundMesenchymal stem cells (MSCs) have been used to treat asthma in a mouse model. However, the efficacy and mechanism of MSCs are not elucidated. MicroRNAs (miRNAs) play a key rolein asthma and related to the aim of this study was to illustrate the role of miR21 and its influence on MSC migration in asthma model. MethodsA mouse model of asthma was established using cockroach extract (CRE), and miR-21 expression was examined. A miR-21 lentivirus construct was used to investigate the role of miR-21 in vivo and in vitro in mouse bone marrow-derived (BM-) MSCs. A TOPFlash reporter gene assay was used to study the signaling downstream of miR-21. IL-4, IL-5, IL-13, IgE, and IgG1 levels in bronchoalveolar lavage fluids were determined by enzyme-linked immunosorbent assays.ResultsMiR-21 was upregulated in CRE-induced asthmatic mice. MiR-21 promoted allergic airway inflammation and airway hyperreactivity by inhibiting BM-MSC migration. β-Catenin was found to act downstream of miR-21 as a negative regulator of miR-21. Rescue experiments verified that miR-21 inhibited BM-MSC migration by suppressing Wnt/β-catenin signaling.ConclusionMiR-21 promotes allergic airway inflammation and AHR and inhibits BM-MSC migration through Wnt/β-catenin signaling, which may serve as an effective therapeutic target for asthma.


2006 ◽  
Vol 290 (1) ◽  
pp. C27-C34 ◽  
Author(s):  
Yan Sun ◽  
Toby C. Chai

Interstitial cystitis (IC) is an idiopathic hypersensory condition of the bladder associated with increased urinary ATP and increased stretch-activated ATP release by bladder urothelial cells (BUCs), suggesting augmented purinergic signaling in the bladder. To test this theory further, monolayers of cultured BUCs derived from bladder biopsies obtained from patients with IC and control patients were stimulated with 10–30 μM ATP with subsequent measurement of extracellular ATP levels using the luciferin-luciferase assay. Stimulation with 30 μM ATP resulted in IC supernatant containing several-fold more ATP than control BUCs initially, followed by a slower decrease in ATP levels. This difference in ATP levels was not completely due to activity of cellular ecto-ATPase, because blockade with ARL67156 did not normalize the difference. Exposure to hypotonic solutions resulted in similar extracellular ATP concentrations in IC and control BUCs, but there was a slower decrease in ATP levels in IC supernatants. Treatment of IC BUCs with 10–40 μM suramin, a nonspecific P2 receptor antagonist, significantly attenuated the IC BUC response to extracellular ATP, restoring IC BUCs to a control phenotype. Pretreatment of IC BUCs with 20 ng/ml of heparin-binding EGF-like growth factor (HB-EGF), which previously has been shown to be decreased in IC urine specimens, also restored IC BUCs to a control phenotype with respect to response to ATP stimulation. In conclusion, IC BUCs have augmented extracellular ATP signaling that could be blocked by suramin and HB-EGF. These findings suggest the possible development of future novel therapeutic techniques.


Sign in / Sign up

Export Citation Format

Share Document