Effect of lowering serum cholesterol on the composition of surfactant in adult rat lung

1997 ◽  
Vol 272 (1) ◽  
pp. L106-L114 ◽  
Author(s):  
K. G. Davidson ◽  
S. M. Acton ◽  
H. A. Barr ◽  
T. E. Nicholas

Treatment of rats with 10 mg.kg body wt-1 day-1 4-aminopyrazolo[3,4-d]pyrimidine (APP) for 2 days markedly reduced serum cholesterol and phospholipids. This was associated with large decreases in the principal component of alveolar surfactant, the disaturated phospholipids (DSP), in the lamellar body and in the tubular myelin-rich and -poor alveolar fractions, but with no concomitant change in cholesterol or surfactant protein A. These decreases in DSP were associated with a decrease in the synthesis of surfactant phospholipids. Despite these large changes in composition of alveolar surfactant, we could detect no change in either static or dynamic lung compliance. However, the treatment markedly increased both the minimum and maximum surface tension of the lipid extract of the tubular myelin-rich fraction, as measured by bubble surfactometry. Whereas these changes appeared unimportant in the isolated perfused lung at resting tidal volume, they were associated with edema after an increase in tidal volume. The ability of APP to inhibit phospholipid synthesis selectively makes it a useful tool in investigating the surfactant system.

1990 ◽  
Vol 258 (6) ◽  
pp. L241-L253 ◽  
Author(s):  
A. Chander ◽  
A. B. Fisher

Secretion of lung surfactant is the direct step in release of the lipoprotein-like product, synthesized in lung epithelial type II cells, onto the alveolar surface. Release of surfactant phosphatidylcholine (PC) proceeds via formation of surface pores during exocytosis of lamellar bodies. Surfactant secretion is regulated locally in the lung by changes in ventilation rate, possibly mediated by distension and altered intracellular pH. Secretion is also stimulated by various agents, including agonists for beta-adrenergic, purinoceptors, and vasopressin receptors and is associated with increased cytosolic Ca2+, cellular adenosine 3',5'-cyclic monophosphate, and activation of protein kinases. Limited studies suggest that secretion of surfactant protein A may be regulated by both cAMP-dependent and protein kinase C-dependent pathways. The integration of these various mechanisms for the in vivo regulation of surfactant secretion remains largely unexplored. Future research into the mechanisms involved in lamellar body fusion with the plasma membrane, role of protein phosphorylation, transient changes in cAMP and Ca2+, and coordination between the secretion of phospholipid and protein components of surfactant should enhance our understanding of secretion of surfactant “lipoprotein.”


1997 ◽  
Vol 273 (4) ◽  
pp. L875-L882 ◽  
Author(s):  
Keisuke Tokieda ◽  
Jeffrey A. Whitsett ◽  
Jean C. Clark ◽  
Timothy E. Weaver ◽  
Kazushige Ikeda ◽  
...  

Pulmonary function was assessed in newborn wild-type and homozygous and heterozygous surfactant protein B (SP-B)-deficient mice after birth. SP-B+/+ and SP-B+/− mice became well oxygenated and survived postnatally. Although lung compliance was decreased slightly in the SP-B+/− mice, lung volumes and compliances were decreased markedly in homozygous SP-B−/− mice. They died rapidly after birth, failing to inflate their lungs or oxygenate. SP-B proprotein was absent in the SP-B−/− mice and was reduced in the SP-B+/− mice, as assessed by Western analysis. Surfactant protein A, surfactant proprotein C, surfactant protein D, and surfactant phospholipid content in lungs from SP-B+/− and SP-B−/− mice were not altered. Lung saturated phosphatidylcholine and precursor incorporation into saturated phosphatidylcholine were not influenced by SP-B genotype. Intratracheal administration of perfluorocarbon resulted in lung expansion, oxygenation, and prolonged survival of SP-B−/− mice and in reduced lung compliance in SP-B+/+ and SP-B+/− mice. Lack of SP-B caused respiratory failure at birth, and decreased SP-B protein was associated with reduced lung compliance. These findings demonstrate the critical role of SP-B in perinatal adaptation to air breathing.


1997 ◽  
Vol 273 (1) ◽  
pp. L55-L63 ◽  
Author(s):  
M. Hallman ◽  
U. Lappalainen ◽  
K. Bry

To investigate the metabolism of intra-amniotic surfactant, surfactant containing double-labeled dipalmitoylphosphatidylcholine (DPPC) was injected in amniotic fluid on days 23-27 of gestation. Within 44 h, DPPC was distributed to the gastrointestinal tract (45.9%), fetal membranes and placenta (8.2%), fetal lung (6.6%), and liver (1.9%). DPPC uptake was higher in the upper than in the lower lung lobes. The mixture of phosphatidylglycerol and DPPC increased the uptake of DPPC that was not saturable (range 15-60 mg phospholipid). There was no detectable metabolism of DPPC taken up by the fetal lung. Surfactant protein A, originating from intra-amniotic heterplogous surfactant, was detected immunohistochemically in alveolar epithelium. Intra-amniotic surfactants did not affect the expression of surfactant protein mRNAs. Intra-amniotic surfactant (1,500-2,000 mg/kg on day 25.3) improved lung compliance of ventilated 27.0-day premature rabbits less than intratracheal surfactant at birth (75-100 mg/kg). Reutilization by the alveolar epithelium of surfactant secreted to future airspaces, airways, and amniotic fluid may be a mechanism that increases intracellular surfactant pool before birth.


1993 ◽  
Vol 265 (2) ◽  
pp. L193-L199 ◽  
Author(s):  
A. Tsuzuki ◽  
Y. Kuroki ◽  
T. Akino

Pulmonary surfactant protein A (SP-A)-mediated uptake of phosphatidylcholine (PC) by alveolar type II cells was investigated. SP-A enhanced the uptake of liposomes containing dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl-2-linoleoyl phosphatidylcholine (PLPC), or 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DPPC-ether), a diether analogue of DPPC, but about twice as much DPPC was taken up by type II cells as PLPC or DPPC-ether. When subcellular distribution was analyzed, 51.3 +/- 2.9% (mean +/- SD, n = 3) of cell-associated radiolabeled DPPC was recovered in the lamellar body-rich fraction in the presence of SP-A, whereas only 19.3 +/- 1.9% (mean +/- SD, n = 3) was found to this fraction in the absence of SP-A. When type II cells were incubated either with DPPC at 0 degree C or with DPPC-ether at 37 degrees C, or no cells were included, low proportions of the cell-associated lipids were present in the fractions corresponding to lamellar bodies even in the presence of SP-A. Anti-SP-A antibody significantly reduced the radioactivity incorporated into the lamellar body fraction. Phosphatidylcholine that had been incorporated into lamellar bodies remained largely intact when SP-A was present. Subcellular fractionations of type II cells with radiolabeled SP-A and DPPC revealed that the sedimentation characteristics of cell-associated SP-A are different from those of DPPC, although a small broad peak of radiolabeled SP-A was found in the lamellar body fraction.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 260 (4) ◽  
pp. L226-L233 ◽  
Author(s):  
A. B. Fisher ◽  
I. Arad ◽  
C. Dodia ◽  
A. Chander ◽  
S. I. Feinstein

Synthesis and secretion of surfactant-associated protein were studied in isolated rat lungs perfused with [3H]phenylalanine or [35S]methionine in synthetic medium. Surfactant was isolated by lung lavage and density-gradient centrifugation followed by dialysis to remove unincorporated amino acid and extraction with ethanol-ether to yield a delipidated protein fraction. Incorporation of [3H]phenylalanine into the delipidated surfactant protein fraction showed a lag phase of approximately 3 h followed by progressive increase over the next 3 h at a rate of 1.6 nmol.mg protein-1.h-1. With 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP, 0.1 mM) added to the perfusate, the incorporation rate between 3 and 6 h was increased by 75%. 3H specific activity in a delipidated lamellar body-rich fraction isolated from lung homogenates was unchanged by 8-BrcAMP at 3 h but was increased by 45% at 6 h. The major peak of radioactivity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of surfactant and lamellar bodies corresponded to proteins of 27–36 kDa that were identified as surfactant protein A (SP-A) by immunoblot. In the presence of 8-BrcAMP during 6 h of perfusion, specific activity of 35S-labeled SP-A in immunoprecipitated protein was increased by 93% and the SP-A mRNA content of lung was increased 145%. These results show that isolated perfused lungs synthesize and secrete surfactant-associated proteins and that the presence of a permeable cAMP analogue in the lung perfusate leads to increased secretion followed by induction of synthesis for SP-A.


1992 ◽  
Vol 262 (6) ◽  
pp. L765-L772 ◽  
Author(s):  
M. Ikegami ◽  
J. F. Lewis ◽  
B. Tabor ◽  
E. D. Rider ◽  
A. H. Jobe

Surfactant protein A (SP-A) metabolism was studied in vivo in 33 preterm ventilated lambs at 138 +/- 1 days gestational age by measuring recoveries of exogenously administered surfactant containing both radiolabeled SP-A and labeled saturated phosphatidylcholine (Sat PC) given via the trachea at birth. Endogenously secreted SP-A was also labeled with [35S]methionine and followed over 24 h. The exogenously labeled SP-A left the alveolar pool more rapidly than did Sat PC over the first 5 h of life (P less than 0.05), and both exogenously labeled SP-A and Sat PC were detected within lamellar bodies by 2 h, indicating uptake from the airspaces. The quantity of SP-A in alveolar washes increased about twofold from birth to 5 h of age, whereas alveolar Sat PC pools were constant over 24 h. The SP-A endogenously labeled with [35S]methionine was recovered at highest specific activities in the alveolar washes at 10 and 45 min after birth with no labeled SP-A detectable in lamellar body fractions until 2 h. The curve for endogenous SP-A labeling of lamellar bodies was similar to that for exogenous labeling, indicating that SP-A was initially secreted by a pathway independent of lamellar bodies with subsequent SP-A labeling of lamellar bodies. The kinetics of SP-A metabolism were very different than for Sat PC in preterm lambs.


2001 ◽  
Vol 281 (2) ◽  
pp. L345-L360 ◽  
Author(s):  
Heide Wissel ◽  
Andrea Lehfeldt ◽  
Petra Klein ◽  
Torsten Müller ◽  
Paul A. Stevens

Intracellular transport of endocytosed surfactant protein A (SP-A) and lipid was investigated in isolated rat type II cells. After internalization, SP-A and lipid are taken up via the coated-pit pathway and reside in a common compartment, positive for the early endosomal marker EEA1 but negative for the lamellar body marker 3C9. SP-A then recycles rapidly to the cell surface via Rab4-associated recycling vesicles. Internalized lipid is transported toward a Rab7-, CD63-, 3C9-positive compartment, i.e., lamellar bodies. Inhibition of calmodulin led to inhibition of uptake and transport out of the EEA1-positive endosome and thus of resecretion of both components. Inhibition of intravesicular acidification (bafilomycin A1) led to decreased uptake of both surfactant components. It inhibited transport out of early endosomes for lipid only, not for SP-A. We conclude that in type II cells, endocytosed SP-A and lipid are transported toward a common early endosomal compartment. Thereafter, both components dissociate. SP-A is rapidly recycled to the cell surface and does not enter classic lamellar bodies. Lipid is transported toward lamellar bodies.


1993 ◽  
Vol 264 (5) ◽  
pp. L431-L437 ◽  
Author(s):  
A. Wali ◽  
M. F. Beers ◽  
C. Dodia ◽  
S. I. Feinstein ◽  
A. B. Fisher

Synthesis and secretion of surfactant protein A (SP-A) were studied in the isolated perfused rat lung using Trans35S-label (approximately 85% methionine, 15% cysteine) in the perfusate with or without 1 mM ATP or 0.1 mM 8-bromoadenosine 3',5',-cyclic monophosphate (8-BrcAMP) for up to 6 h of perfusion. By enzyme-linked immunosorbent assay, the SP-A content was 36 +/- 0.3% of total protein in extracellular surfactant and 10.8 +/- 1.9% of total protein in lamellar bodies of control lungs; these relativr proportions were maintained in the presence of ATP or 8-BrcAMP. Incorporation of [35S]methionine (cysteine) into the surfactant and lamellar body protein fraction could be detected at 4 h of perfusion. At 6 h, specific activity of total protein [disintegrations per minute (dpm)/micrograms)] was significantly increased in both the surfactant (54%) and lamellar body fractions (30%) under the influence of either secretagogue compared with control conditions. In the presence of ATP, there was a significant increase in the SP-A immunoprecipitable counts of 61 and 72% in extra- and intracellular compartments, respectively. However, no significant change was observed in the relative abundance of SP-A mRNA between control and secretagogue-treated lungs. This dissociation of SP-A mRNA abundance and label incorporation into protein indicates that alteration in translational efficiency or posttranslational factors may be involved in the secretagogue-induced stimulation of SP-A synthesis.


1993 ◽  
Vol 265 (2) ◽  
pp. L133-L139 ◽  
Author(s):  
B. Rustow ◽  
R. Haupt ◽  
P. A. Stevens ◽  
D. Kunze

Lung surfactant is exposed to strongly oxidizing conditions. We examined the hypothesis that in lung, lipophilic antioxidants are secreted together with surfactant to counteract the peroxidation of surfactant constituents. Lung lavage and the subfractions of the alveolar surfactant contain the lipophilic antioxidants vitamin E, vitamin A, and plasmalogens. The specific radioactivity of vitamin E isolated from serum, lung homogenate, lamellar bodies, and lung lavage increased linearly up to 3 h after intraperitoneal application of [3H]tocopherol. [3H]tocopherol was secreted in situ together with [14C]palmitic acid-labeled phospholipid in response to isoproterenol. Type II cells cultured in presence of [3H]tocopherol or of [3H]cholecalciferol and [14C]palmitic acid responded to isoproterenol by a time-dependent increase in secretion of [3H]tocopherol and of 14C-labeled phospholipids but not of [3H]cholecalciferol. The isoproterenol-stimulated secretion of [3H]tocopherol and of 14C-labeled phospholipids by type II cells is inhibited by surfactant protein A. We conclude that the alveolar surfactant contains lipophilic antioxidants as integral constituents. [3H]tocopherol seems to be secreted together with surfactant.


Sign in / Sign up

Export Citation Format

Share Document