scholarly journals Hepatocyte growth factor is elevated in chronic lung injury and inhibits surfactant metabolism

2000 ◽  
Vol 278 (2) ◽  
pp. L382-L392 ◽  
Author(s):  
Jeevalatha Vivekananda ◽  
Vibhudutta Awasthi ◽  
Shanjana Awasthi ◽  
Dolphin B. Smith ◽  
Richard J. King

Adult respiratory distress syndrome may incorporate in its pathogenesis the hyperplastic proliferation of alveolar epithelial type II cells and derangement in synthesis of pulmonary surfactant. Previous studies have demonstrated that hepatocyte growth factor (HGF) in the presence of serum is a potential mitogen for adult type II cells (R. J. Panos, J. S. Rubin, S. A. Aaronson, and R. J. Mason. J. Clin. Invest. 92: 969–977, 1993) and that it is produced by fetal mesenchymal lung cells (J. S. Rubin, A. M.-L. Chan, D. P. Botarro, W. H. Burgess, W. G. Taylor, A. C. Cech, D. W. Hirschfield, J. Wong, T. Miki, P. W. Finch, and S. A. Aaronson. Proc. Natl. Acad. Sci. USA 88: 415–419, 1991). In these studies, we expand on this possible involvement of HGF in chronic lung injury by showing the following. First, normal adult lung fibroblasts transcribe only small amounts of HGF mRNA, but the steady-state levels of this message rise substantially in lung fibroblasts obtained from animals exposed to oxidative stress. Second, inflammatory cytokines produced early in the injury stimulate the transcription of HGF in isolated fibroblasts, providing a plausible mechanism for the increased amounts of HGF seen in vivo. Third, HGF is capable of significantly inhibiting the synthesis and secretion of the phosphatidylcholines of pulmonary surfactant. Fourth, HGF inhibits the rate-limiting enzyme in de novo phosphatidylcholine synthesis, CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15 ). Our data indicate that fibroblast-derived HGF could be partially responsible for the changes in surfactant dysfunction seen in adult respiratory distress syndrome, including the decreases seen in surfactant phosphatidylcholines.

2021 ◽  
Vol 11 ◽  
Author(s):  
Qi Ding ◽  
Wenxiang Zhu ◽  
Yirui Diao ◽  
Gonghao Xu ◽  
Lu Wang ◽  
...  

Acute respiratory distress syndrome (ARDS) is a complex cascade that develops from acute lung injury (ALI). Ginseng can be used to treat ALI/ARDS. Studies have shown that some of ingredients in ginseng had anti-inflammation, antioxidative, and immune regulation effects and can protect alveolar epithelial cells in mice. However, the potential targets, biological processes, and pathways related to ginseng against ALI/ARDS have not been investigated systematically. We employed network pharmacology, molecular docking, and animal experiments to explore the therapeutic effects and underlying mechanism of action of ginseng against ALI/ARDS. We identified 25 compounds using ultrahigh-performance liquid chromatography Q-Orbitrap mass spectrometry and their 410 putative targets through database analyses. Sixty-nine of them were considered to be key targets of ginseng against ALI/ARDS according to overlapping with ALI/ARDS-related targets and further screening in a protein–protein interaction (PPI) network. The phosphatidylinositol 3-kinase-protein kinase B (PI3K-AkT) and mitogen-activated protein kinase (MAPK) pathways were recognized to have critical roles for ginseng in ALI/ARDS treatment. Signal transducer and activator of transcription (STAT) 3, vascular endothelial growth factor A (VEGFA), fibroblast growth factor (FGF) 2, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), MAPK1, and interleukin (IL) 2 were the top six nodes identified by analyses of a compound–target-pathway network. Molecular docking showed that most of the ingredients in ginseng could combine well with the six nodes. Ginseng could reduce the pathologic damage, neutrophil aggregation, proinflammatory factors, and pulmonary edema in vivo and inhibit the PI3K-Akt signaling pathway and MAPK signaling pathway through downregulating expressions of STAT3, VEGFA, FGF2, PIK3CA, MAPK1, and IL2. Our study provides a theoretical basis for ginseng treatment of ALI/ARDS.


Sign in / Sign up

Export Citation Format

Share Document